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Abstract 
We present a logic for reasoning with probabilistic arguments 
to help decision making under uncertainty. The syntax of the 
logic is essentially modal propositional, and arguments of 
decision makers are expressed as sentences of the logic, with 
associated supports drawn from a probability dictionary. To 
aggregate a set of arguments for and against some decision 
options, we construct a Bayesian belief network based on the 
argument set without requiring any additional information 
from the decision-maker. Evidence converted from the 
underlying knowledge of the decision maker is posted at the 
relevant nodes of the belief network to compute probability 
distributions, and hence rankings, among the decision 
options. Decision-making based on such rankings of decision 
options is therefore guaranteed to be consistent with 
probability theory. We develop possible world semantics of 
the logic, and establish soundness and completeness results. 
We illustrate the proposed decision-making framework in the 
context of a concrete example. 

1 Introduction 
Human decision-making can be regarded as a complex information 
processing activity, which, according to (Rasmussen, 1983), is 
divided into three broad categories, corresponding to activities at 
three different levels of complexity. At the lowest level is skill-
based sensorimotor behavior, representing the most automated, 
largely unconscious level of skilled performance such as deciding 
to brake upon seeing a car ahead. At the next level is rule-based 
behavior, exemplified by simple procedural skills for well-
practiced, simple tasks such as inferring the condition of a game-
playing field based on the current weather. Knowledge-based 
behavior represents the most complex cognitive processing, used 
to solve difficult and sometimes unfamiliar problems, for making 
decisions that require dealing with various factors and uncertain 
data. Examples of this type of processing include determining the 
status of a game (i.e. a sporting event), given that there is transport 
disruption. Our focus here is to develop an argumentation 
framework to support human decision making at the knowledge 
base level by providing suggestions as to alternative courses of 
action, and help determine the most suitable. Human decision 
makers often weigh the available alternatives and select the most 
promising one based on the associated pros and cons. The 
proposed argumentation framework, similar to the one developed 
in (Das et al. 1997; Das and Grecu, 2000; Fox and Das, 2000), 
therefore naturally supports human decision-makers by 
augmenting and complementing their own cognitive capabilities. 

Two important requirements must be met if we are to develop a 
practical and useful decision support system: the system must be 
declarative and robust. The declarative nature of the system 
ensures a human readable representation of knowledge and human-
like reasoning with knowledge. Robustness of the system ensures 

its ability to cope with uncertain or missing data in situations 
where the required knowledge is unavailable in the underlying 
knowledge base. We plan to make our proposed framework 
declarative via the use of a high-level logical syntax for 
representing arguments, including probabilities to represent their 
strengths. The robustness is assured via representations that allow 
computations over a range of values, and the use of Bayesian 
belief network technology (Pearl, 1988) to support combining 
diverse evidence of arguments for and against decision 
alternatives. The belief network formalism supports probabilistic 
reasoning over the causal and evidential relations combining 
knowledge from decision makers and the current set of beliefs, so 
that the system can derive probability estimates for adopting 
particular decision options. 

To summarize our framework, we use the syntax of modal 
propositional logic for representing arguments, and include 
probabilities to represent their strengths. For the purpose of 
aggregation of arguments, we automatically transform a set of 
arguments for and against some decision options into a belief 
network. The generated belief network then forms the basis for 
computing aggregated evidence for the decision options according 
to the strengths of the arguments. This hybrid approach has the 
following advantages: 
• Arguments are expressed in a human readable syntax of 

modal propositional logic, along with a probability dictionary 
for expressing their strengths. 

• The possible world semantics of the logic that we develop is 
intuitive to decision makers, as decision options simply 
correspond to various possibilities mapped to possible worlds. 

• Aggregation is carried out on a belief network that is 
automatically constructed out of available arguments, and no 
additional knowledge needs to be acquired. 

 The rest of the paper is organized as follows: Section 2 presents 
an argumentation-based decision-making framework. Section 3 
presents the underlying logic of arguments in the proposed 
framework. Section 4 presents an approach to argument 
aggregation via Bayesian belief networks. Section 5 presents a 
concrete example to illustrate the syntax and semantics of the logic 
and the argumentation and aggregation process. Each of Section 3 
and Section 4 can be read independently of the other, but the 
example in Section 5 requires understanding of both the logic and 
the aggregation process. Throughout the paper we use the single 
example of the status of a ball game, which is scheduled to occur 
sometime today. Proof of theorems and propositions stated in the 
paper have been omitted due to space limitations. The proofs can 
be found in (Fox and Das, 2000).  

2 Decision Making via Argumentation  
This section presents the non-temporal version of the 
argumentation-based decision-making framework that was 

1 



 

developed in (Fox and Das, 2000; Das et al. 1997), but focusing 
only on probabilistic arguments. We first provide a brief historical 
background of argumentation. Then we provide a concrete 
example to illustrate the use of argumentation, followed by the 
formal ‘domino’ model of argumentation and a knowledge 
representation language for expressing decision constructs and 
beliefs and knowledge in the model. 

2.1 Brief Background in Argumentation 
Toulmin in his book (Toulmin, 1956) discussed how difficult it is 
to cast everyday practical arguments into classical deductive form. 
He claimed that arguments needed to be analyzed using a richer 
format than the simple if-then form of classical logic. He 
characterizes practical argumentation by means of the scheme in 
Figure 1. 

Data Qualifier, Claim

Warrant

Backing

Rebuttal

The game is cancelledSupportsNo radio commentary

Since
Radio commentary is usually provided

for a game

Because,
According to the broadcasting corporation,

there was radio commentary for 99% of the games

Unless
Radio transmission failure at the station

 

Figure 1: Toulmin’s model of argumentation 

As shown in Figure 1, Toulmin’s model decomposes an argument 
into a number of constituent elements: 1) Claim: the point a 
decision maker is trying to make; 2) Data: the facts about a 
situation provided to support the claim; 3) Warrant: statements 
indicating general ways of arguing; 4) Backing: generalizations 
providing explicit support for an argument; 5) Qualifier: phrases 
showing the confidence an argument confers on a claim; 6) 
Rebuttal: acknowledges exceptions or limitations to the argument. 
To illustrate, consider an argument claiming that the game, which 
was supposed to be held today, has been cancelled. The facts or 
beliefs (that is, data) on which this claim is made are that there is 
no radio commentary for the game in question. General principles 
or rules, such as “radio commentary is usually provided for a 
game”, warrant the argument, based on statistical research 
published by the broadcasting corporation, which is the backing. 
Since the argument is not conclusive we insert the qualifier 
“supports” in front of the claim, and note the possibility that the 
conclusion may be rebutted on other grounds, such as failure of 
radio transmission of the commentary. 

Our approach is to transform Toulmin’s work to a more formal 
setting, much the same way as in (Fox et al, 1992). We too deal 
with the concepts of warrant and rebuttal, but as very simple 
prepositional arguments for and against. We do not deal with first-
order sentences that are more suitable for representing backings in 
Toulmin’s model. We introduce the use of a single qualifier called 
‘support’. 

2.2 Example Decision Making Process 
We explain here the argumentation based decision-making 
framework in (Fox and Das, 2000), continuing with our ball-game 
example as shown in Figure 2.  

Determine
Game
Status

Decide
Activity

Transport
Disruption

Withdraw
Money

Travel to
Town shop

On

Cancelled

Postponed

Shopping

Movie

 

Figure 2: Decision-making flow 

The process starts when the decision maker observes transport 
disruption on the way to catch a public transport (e.g. a bus) to go 
to town for the game. The newly discovered transport status then 
becomes the decision maker’s belief. Given that the decision 
maker “believes” that there is transport disruption, it raises a 
“goal” of finding the status of the game. It then infers from its 
common sense knowledge that there are three possible or 
“candidate” states of the game, On, Cancelled, and Postponed, and 
so constructs arguments for and against these alternatives. These 
arguments use other beliefs of his, based on observations such as 
the weather and radio commentary. In this case the balance of 
“argument” is in favor of the game being cancelled, and this 
conclusion is added into the decision maker’s database of beliefs. 

Given this new belief regarding the cancelled status of the 
game, a new goal is raised, i.e. to plan for alternative activities. As 
in determining the status of the game, here there are two options 
for alternative activities, shopping and going to a movie, and the 
decision maker once again constructs arguments for the 
alternatives, taking into account transport, cost, etc., and 
recommends going shopping as the most preferred alternative 
activity on the basis of the arguments. The adoption of a shopping 
“plan” leads to an appropriate schedule of “actions” involved in 
shopping, such as withdrawing money, traveling to town, going to 
stores, etc. The effects of these actions are recorded in the decision 
maker’s database, which may lead to further goals, and so on. 

2.3 The Domino Model 
Figure 3, the ‘domino’ model, captures graphically the decision-
making framework, where the outer chain of arrows in the figure 
represents the above example decision-making process. Within our 
proposed framework, a decision schema has several component 
parts: an evoking situation, a goal, one or more candidates, and one 
or more commitment rules. 

A situation describes, as a boolean expression on the database 
of beliefs, the situation or event which initiates decision making. 
For example, a belief that an abnormality (e.g. transport 
disruption) is present may lead to a choice between alternative 
possible causes/effects of it. 
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A goal is raised as soon as the evoking situation occurs. In 
particular, the belief that an abnormality is present may raise the 
goal of determining its cause or effects. For example, if transport is 
disrupted then one of its possible effects is the cancellation of the 
game, so therefore the goal is to determine game status. On the 
other hand, if there is no radio commentary then a goal is to 
determine the status of the game, as its cancellation causes no 
radio commentary. Typically, a goal is represented by a property 
that the decision maker tries to bring about. 

PlanArguments

ActionSituation

Candidates

Goals

transport_disruptionDetermine_game_status

•on
•cancelled
•postponed

transport_disruption => support(cancelled, 0.7);
...

cancelleddecide_alternate_activity

•shopping
•movie

rain=>support(not shopping,’+’)
...

shopping

•withdraw_money
•travel_to_town
•shop

 

Figure 3: Domino process view of the example 

Candidates are a set of alternative decision options, such as {on, 
cancelled, postponed}. In principle the set of candidates may be 
defined extensionally (as a set of propositions) or intentionally (by 
rules), but we only consider the former case here. 

Arguments are modal-propositional rules that define the 
arguments that are appropriate for choosing between candidates for 
the decision. Argument schemas are typically concerned with 
evidence when the decision involves competing hypotheses 
(beliefs), and with preferences and values when the decision is 
concerned with actions or plans. 

Commitment rules define the conditions under which the 
decision may be recommended, or taken autonomously, by the 
decision maker. It may include logical and/or numerical conditions 
on the argument and belief databases. 

The following section represents a decision schema and its 
components as described above into a decision construct. 

2.4 Decision Constructs 
The concept of the domino decision scheme and its components is 
captured in a high-level declarative syntax. Figure 4 gives the 
decision construct representing the ‘Determine Game Status’ 
decision circle in Figure 2. All decisions have an evoking situation 
which, if the decision maker believes it to be true, raises the 
corresponding goal. The three possible paths from the decision 
circle go to the following three alternative pathways: on, cancelled, 
and postponed. These candidates are represented explicitly in the 
decision construct. The arguments and commitments within a 
decision construct are also represented directly. 

The decimal number in an argument represents the probabilistic 
measure of support given by the argument to the decision 
candidate. The basic idea is that an argument is a reason to believe 
something or a reason to act in some way and an argument schema 
is a rule for generating such reasons during decision making. The 
more arguments there are for a candidate belief or action, then the 

more a decision maker is justified in committing to it. The 
aggregation function can be a simple “weighing up of pros and 
cons” (netsupport), but it represents a family of more or less 
sophisticated functions by which we may assess the merit of 
alternative candidates based on the arguments about them.  

decision:: game_status
situation

transport_disruption
goal

determine_game_status
candidates

on;
cancelled;
postponed

arguments
transport_disruption => support(cancelled, 0.7);
not radio_commentary => support(not on, 0.9);
not rain => support(on, 0.95);
bad_economy => support(not cancelled, 0.6);
bad_economy & free_slot => support(postponed, 0.7);

commits
netsupport(X, U) & netsupport(Y, V) &
netsupport(Z, W) & U > V & U > W => add(X).  

Figure 4: Example decision construct 

In general, an argument schema is like an ordinary inference 
rule with 

support(<candidate>, <sign>) 
as its consequent, where <sign> is drawn from a set called a 
dictionary. The  <sign> represents, loosely, the confidence that 
the inference confers on the candidate. The dictionary may be 
strictly quantitative  (e.g. the numbers in the [0,1] interval) or 
qualitative (e.g. the symbols {+, -} or {pro, con}). Here we are 
dealing with probabilistic arguments and <sign> is drawn from 
the probability dictionary [0,1]. An example argument from the 
decision construct in Figure 4 is 

transport_disruption => 
support(cancelled,0.7) 

where <candidate> is ‘cancelled’. Informally, the argument 
states that if there is transport disruption then there is 70% chance 
that the game will be cancelled. The rest of the arguments of the 
decision construct provide support for and against the decision 
options based on the evidence of radio commentary, weather, and 
hosting club’s economic condition, and availability of free slots for 
rescheduling the game. A knowledge base for the decision maker 
consists of a set of definitions of this and other kinds of tasks.  

A decision maker considers the decision game_status in 
Figure 4 for activation when the belief 
transport_disruption is added to the database.  When the 
decision maker detects this, it checks whether any of the 
candidates has already been committed. If not, the decision will be 
activated and the goal determine_game_status is raised; 
otherwise no action is taken. While the goal is raised, further 
information about the situation (e.g. the weather) can be examined 
to determine whether the premises of any argument schemas are 
instantiated. 

A commitment rule is like an ordinary rule with one of 
 add(<property>)  

schedule(<plan>) 
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as its consequent. The former adds a new belief to the knowledge 
base and the latter causes an action to be scheduled as follows (see 
Figure 5): 

decision:: alternative_activity
situation

cancelled
goal

decide_alternative_ activity
candidates

shopping;
movie

arguments
rain => support(no shopping, 0.8);
…

commits
… .  

Figure 5: Example decision construct 

See (Fox and Das, 2000) for information on how to deal with a 
scheduled plan that is committed. When a decision is in progress 
then, as additional arguments become valid, the decision’s 
commitment rules are evaluated to determine whether it is justified 
to select a candidate. A commitment rule will often make use of an 
aggregation function such as ‘netsupport’ but this is not 
mandatory. The netsupport function evaluates collections of 
arguments for and against any candidate to yield an overall 
assessment of confidence and establish an ordering over the set of 
candidates; this ordering may be based on qualitative criteria or on 
quantitative assessment of the strength of the arguments. This 
function has the form: 

netsupport(<candidate>, <support>) 
In section 4, we implement the ‘netsupport’ function using an 
algorithm for evidence propagation in belief networks (Pearl, 
1988; Jensen, 1996).  

3 Logic of Arguments  
The section presents the underlying logic of the argumentation-
based decision-making framework, ArgL , as described above, its 
possible world semantics, and the soundness and completeness 
results.   

3.1 The Syntax 
Suppose P is the set of all propositions, representing properties and 
actions, and includes the special property symbol T (true). Note 
that the logic does not distinguish between properties and actions; 
rather they are treated uniformly as propositions. ArgL  is 
essentially a propositional logic extended with certain modal 
operators. The modal operators  and bel〈 〉 goal〈 〉  of ArgL  
correspond to beliefs (Fagin, 1988; Hintikka, 1962) and goals 
(Cohen and Levesque, 1990) respectively. Propositions are 
supported by collections of arguments, and the confidence in a 
proposition or argument is represented by a number between 0 and 
1. Suppose D is the dictionary [0, 1] with the top element ∆ as 1. In 
addition, for each dictionary symbol d ∈ D, we have a modal 
“support” operator dsup〈 〉 in ArgL . The formulae (or assertions) of 

ArgL extend the domain of propositional formulae to the domain of 
formulae as follows: 
• propositions are formulae. 
• and bel F〈 〉 goal F〉〈  are formulae, where F is a formula. 

sup F〈• d 〉  is a formula, where F is a formula and d is in the 
dictionary D. 

• F¬ and F G∧  are formulae, where F and G are formulae. 
We take ⊥ (false) to be an abbreviation of ¬T. Other logical 
connectives and the existential quantifier are defined using ¬ and 
∧ in the usual manner. 

3.2 Example Sentences and Arguments 
We provide here some example sentences of ArgL  that are 
translations of the decision construct shown in Figure 4. The 
situation and goal portion in the decision game_status is 
translated to the following modal rule: 

bel transport_disruption goal determine_game_status→〈 〉 〈 〉  
The above ArgL  sentence states that if transport_disruption is 

believed, then a goal is determine_game_status. A goal is 
considered to be achieved as soon as it becomes true. In the 
context of the decision game_status, this is reflected in the 
following formulae: 

( )

( )

( )

bel on cancelled postponed
bel determine_game_status

bel cancelled on postponed
bel determine_game_status

bel postponed on cancelled
bel determine_game_status

〈 〉 ∧ ¬ ∧ ¬ →
〈 〉

〈 〉 ∧ ¬ ∧ ¬ →
〈 〉

〈 〉 ∧ ¬ ∧ ¬
〈 〉

→

 

Figure 6: Translation of the goal in the decision construct 
shown in Figure 4  

The first of the above four sentences (Figure 6) states that if it is 
believed that the game is on, but neither cancelled nor postponed, 
then determine_game_status is believed. In other words, the earlier 
goal determine_game_status is considered achieved upon 
believing that the game is on. The ArgL  representations for the 
arguments in the diagnosis decision are (Figure 7): 

_

_
_ _( )

0.7

0.9

0.95

0.6

0.7

bel transport_disruption sup cancelled
bel radio commentary sup on
bel rain sup on
bel bad economy sup cancelled
bel bad economy free slot sup postponed

〈 〉 → 〈 〉
〈 〉¬ → 〈 〉¬
〈 〉¬ → 〈 〉
〈 〉 → 〈 〉¬
〈 〉 ∧ → 〈 〉

 

Figure 7: Translation of the arguments in the decision 
construct shown in Figure 4 

3.3 The Axioms 
The axioms of ArgL  are divided into classical and modal axioms. 
For classical axioms, we consider every instance of a propositional 
tautology to be an axiom, and we also have the modus ponens 
inference rule. ArgL adopts a standard set of axioms and inference 
rules of beliefs and goals in its reasoning and decision making, 
which can be found in (Cohen and Levesque, 1990; Meyer et al, 
1991). A detailed explanation can be found in (Fox and Das, 
2000). The ArgL axioms and inference rules are: 

¬〈bel〉 ⊥, ¬〈goal〉 ⊥ 
〈bel〉F ∧ 〈bel〉(F → G) → 〈bel〉G 
〈bel〉F → 〈bel〉〈bel〉F 
¬〈bel〉F → 〈bel〉¬〈bel〉F 
〈goal〉F ∧ 〈goal〉(F → G) → 〈goal〉G 
〈bel〉F → 〈goal〉F 
if | F then | 〈bel〉 F 
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We now present a set of axioms for the modal operator 〈supd〉. 
First of all, there can be no support for an inconsistency and this is 
axiomatized as follows: 

¬〈supd〉 ⊥, for every d ∈ D 
The following inference rule states that the support operator is 
closed under implication. In other words, if F has support d and F 
→ G is valid in ArgL  then G too has support d. 

if  | F → G  then  | 〈supd〉F → 〈supd〉G, for every d ∈ D 
A valid ArgL  formula always has the highest support: 

if | F then | 〈sup∆〉F 
Support operators can be combined to obtain a single support 
operator by using the following axiom: 

〈supd1〉F ∧ 〈supd2〉G → 〈supd1⊗d2〉(F ∧ G) 
where ⊗: D × D → D is the function for computing supports for 
assertions derived through material implication. The axiom states 
that if d1 and d2 are supports for F and G respectively then ⊗(d1, 
d2) (or d1 ⊗ d2 in infix notation) is a derived support for F ∧ G. 
Note that d ⊗ ∆ = d, for every d in D. If F = G, then the above 
axiom basically aggregates two arguments for the decision option 
F. Such aggregation via belief networks will be presented in the 
following section. The following axiom says that every level of 
evidence for an assertion also implies every level of evidence for 
the assertion lower than the evidence: 

〈supd1〉F → 〈supd2〉F, where d2 ≤ d1 

3.4 Possible World Semantics 
A model of ArgL  is a tuple 

 〈W, V, Rb, Rs, Rg〉 
in which W is a set of possible worlds. A world consists of a set of 
qualified assertions outlining what is true in the world. V is a 
valuation that associates each world with a subset of the set of 
propositions. In other words, 

V: W → Π(P) 
where P is the set of propositions and Π(P) is the power set of P. 
The image of the world w under the mapping V, written as V(w), is 
the set of all propositions which are true in the world w. This 
means that p holds in w for each p in V(w). 

The relations Rb, Rs and Rg are the accessibility relations for 
beliefs, supports and goals respectively. For example, the relation 
Rb relates a world w to a set of worlds considered possible by the 
decision-maker from w. If there are n candidates for a decision that 
are active in a world w then there are n possible worlds. 

The relation Rs is a hyperelation which is a subset of the set 
W × D × Π(W) 

Semantically, if 〈w, d, W'〉 ∈ Rs then there is an amount of support 
d for committing to one of the possible worlds in W' from the 
world w, where W' is non-empty. In other words, the support d is 
for the set of assertions uniquely characterized by the set of worlds 
W'. 

An assertion is a belief of a decision maker at a world w if and 
only if it is true in all possible worlds that are accessible from the 
world w by Rb. Note that the members of Rs have been considered 
to be of the form 〈w, d, W'〉 rather than 〈w, d, w'〉. The main reason 
is that the derivability of 〈supd〉F means F is true only in a “subset” 
of the set of all possible worlds accessible from w.  If F is true in 
all possible worlds accessible from w then we would have had 
〈bel〉F, which implies the highest form of support for F that is 
greater than or equal to d. 

Due to the axioms related to the modal operator 〈bel〉, the 
standard set of properties that will be possessed by the 
accessibility relation Rb is: 
Model Property 1: Rb is serial, transitive, and euclidean 

The requirement that a decision maker may not believe in 
something that is inconsistent guarantees the existence of a 
possible world, which is the seriality property. The explanation for 
Rb being transitive and euclidean can be found in (Chellas, 1980; 
Lemmon, 1977).  

The hyperelation Rs satisfies the following properties due to the 
axioms related to the modal operator 〈supd〉: 
Model Property 2: For every w, w1, w2 in W and d, d' in D, the 
relation Rs satisfies the following conditions: 

• if 〈w, d, W'〉 ∈ Rs then W' ≠ ∅. 
• if 〈w, d, W'〉 ∈ Rs then 〈w, d', W'〉 ∈ Rs, for every d' ≤ d 
• 〈w, ∆, W〉 ∈ Rs . 
• if 〈w, d1, W1〉, 〈w, d2, W2〉 ∈ Rs then 〈w, d1 ⊗ d2, W1 ∩ W2〉 ∈ 

Rs , provided W1 ∩ W2 ≠ ∅. 
Explanation of each of these restrictions on Rs can be found in 
(Das and Fox, 2000). 

Aggregation of arguments introduces a hierarchy of preferences 
among the set of all possible worlds accessible from w by the 
relation Rb. The maximal elements and possibly some elements 
from the top of the hierarchy of this preference structure will be 
called goal worlds. The relation Rg, which is a subset of Rb, relates 
the current world to the set of goal worlds. Only one of the goal 
worlds is committed for transition from the current world based on 
the aggregated support. This world will be called the committed 
world. 

An assertion is a goal in a world w if and only if it is true in 
every goal world accessible from w by the accessibility relation Rg. 
Axiom ¬〈goal〉⊥ introduces the seriality property on the 
accessibility relation Rg. Axiom 〈bel〉F → 〈goal〉F restricts Rg to a 
subset of Rb, that is, the set of goal worlds is a subset of the set of 
all possible worlds. 
Model Property 3 

• Rg is serial 
• Rg ⊆ Rb : for every w and w’ in W, if w Rg w’ then w Rb w’ 

The semantics of supports, beliefs and goals are as follows. 
Given a model M = 〈W, V, Rb, Rs, Rg〉, the truth values of formulae 
with respect to a world w are determined by the rules given below: 

|=MwT 
|=Mw p iff p ∈ V(w) 
|=Mw 〈supd〉F iff there exists 〈w, d, W’〉 in Rs such that |=Mw F, 
for every w’∈ W’ 
|=Mw 〈bel〉F iff for every w’ in W such that w Rb w’, |=Mw F 
|=Mw 〈goal〉F iff for every w’ in W such that w Rg w’, |=Mw F 
|=Mw ¬F iff |≠M〈w,F 
|=Mw F ∧ G iff |=Mw F and |=Mw G 

A formula F is said to be true in model M if and only if |=Mw F, for 
every w in W. A formula F is said to be valid if F is true in every 
model.  

Suppose Γ is the class of all models satisfying Model Property 
1, Model Property 2, and Model Property 3. Then the soundness 
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and completeness theorem establishes the fact that ArgL is 
determined by Γ. 

4 Aggregation of Probabilistic Arguments via 
Belief Networks 

This section presents our approach to aggregating arguments via 
Bayesian belief network technology. This aggregation process is a 
meta-level reasoning that takes the clauses in the underlying 
knowledge base as input. The reasoning at the object or knowledge 
base level is carried out using the logic ArgL . We first provide a 
brief background in the technology and then present the details of 
the approach.  

4.1 Review of Bayesian Belief Networks 
A Bayesian belief network (Pearl, 1988; Jensen, 1996) is a 
graphical, probabilistic knowledge representation of a collection of 
variables describing some domain. The nodes of the belief network 
denote the variables and the links denote causal relationships 
between the variables. The topology encodes the qualitative 
knowledge about the domain. Conditional probability tables 
(CPTs) encode the quantitative details (strengths) of the causal 
relationships between a node and its parents. In other words, the 
CPTs are local joint probability distributions involving subsets of 
the whole domain. For example, if a variable, x, is 4-valued and 
has one parent variable, y, which is 3-valued, then x's CPT can be 
represented as a 3x4 table where the (i,j)th entry is p(xj|yi). The 
belief network of Figure 8 encodes the relationships over a simple 
domain consisting of the six binary variables, Injury, Rain, Game, 
Transport, Electricity, and Commentary. 

Electricity

Rain

TransportGame

0.2   0.9
0.8   0.1
0.2   0.9
0.8   0.1

p(T=Y|R=P)  p(T=Y|R=A)
p(T=N|R=P)  p(T=N|R=A)

=

0.05  0.20   0.70  0.1
0.95  0.80   0.30  0.0
0.05  0.20   0.70  0.1
0.95  0.80   0.30  0.0

Injury

Yes
No

Present
Absent

Yes
No

Yes
No

p(G=Y|R=P,I=Y)  p(G=Y|R=P,I=N)  p(G=Y|R=A,I=Y)   p(G=Y|R=A,I=N)
p(G=N|R=P,I=Y)  p(G=N|R=P,I=N)  p(G=N|R=A,I=Y)  p(G=N|R=A,I=N)=

0.1
0.9
0.1
0.9

0.2
0.8
0.2
0.8

R ≡ Rain
I ≡ Injury
G ≡ Game
E ≡ Electricity
T = Transport
C = Running Commentary

P ≡ Present
A ≡ Absent
Y ≡ Yes
N ≡ No

p(I=Y)
p(I=N)= p(R=P)

p(R=A)=

Yes
No

0.75   0.9
0.25   0.1
0.75   0.9
0.25   0.1

p(E=Y|R=P)  p(E=Y|R=A
p(E=N|R=P)  p(E=N|R=A=

CommentaryYes
No

0.9   0.01
0.1   0.99
0.9   0.01
0.1   0.99

p(C=Y|G=Y)  p(C=Y|G=N)
p(C=N|G=Y)  p(C=N|G=N)

=

)
)

A central feature of the BN formalism is that the belief vector is 
decomposed as a product of the total causal evidence at x, which 
comes from x’s parents, and the total diagnostic evidence at x, 
which comes from x’s children. Root nodes are special cases; they 
require some initial estimate for their causal evidence vectors. 
Belief vectors generally change as new evidence regarding any of 
the variables is added to the network. Thus, if we obtain new 
evidence of electricity being present, our initial belief about rain, 
i.e. (Present = 0.1, Absent = 0.9), should be revised accordingly, 
e.g. to (Present = 0.2, Absent = 0. 8). This is an example of 
diagnostic reasoning from effects back to possible causes. This 
new evidence should also cause us to revise our belief vector for 
Game to reflect a higher probability that the game will be played, 
e.g. to (Yes = 0.91, No = 0.09). This is an example of causal 
reasoning from causes to effects. Thus, belief nets can support the 
model-based anomaly diagnosis both by hypothesis generation 
(diagnostic reasoning) and hypothesis testing (causal reasoning). 
Additionally, the topologies of the networks themselves can 
capture the structure and interconnection of the components at 
hand in an aggregate and easily understood manner. 

 In summary, a Bayesian Belief Network (Pearl, 1988; Lauritzen 
and Spiegelhalter, 1988) offers these principal advantages 
compared to other probabilistic reasoning methods:  Figure 8: Simple Bayesian belief network 

The topology captures the commonsense knowledge that: 
1. Rain causes Transport disruption 
2. Rain causes Electricity failure 
3. Game causes running Commentary on the radio 
4. Injury and Rain prevent Game from being played 

As shown in Figure 8, the CPT specifies the probability of each 
possible value of the child variable conditioned on each possible 
combination of parent variable values. For example, the 
probability of having electricity given that rain is present is 0.75, 
whereas the probability of having electricity given clear skies is 
0.9. 

The structure of a belief network encodes other information as 
well. Specifically, the lack of links between certain variables 
represents a lack of direct causal influence, that is, they indicate 
conditional independence relations. This belief network encodes 
many independence relations, for example, 

1. Electricity ⊥ Transport  Rain 
2. Commentary ⊥ { Rain, Electricity }  Game 

where ‘⊥’ is read ‘is independent of’ and ‘’ is read ‘given.’ Once 
the value of Rain is known, the value of Transport adds no further 
information about Electricity. Similar conditional independence 
assertions hold for other variables. 

When new evidence is posted to a variable in a BN, that 
variable updates its own belief vector, then sends out messages 
indicating updated predictive and diagnostic support vectors to its 
children and parent nodes respectively. These messages are then 
used by the other nodes to update their belief vectors and 
propagate their own updated support vectors. The separation of 
evidence yields a propagation algorithm (Pearl, 1988) in which 
update messages need only be passed in one direction between any 
two nodes following posting of evidence. Thus, the algorithm’s 
complexity in a polytree type of network is proportional to the 
number of links in the network. This separation also automatically 
prevents the possibility of double-counting evidence. 

1. Its use of cause/effect relationships is intuitive. 
2. Its probability estimates are guaranteed to be consistent with 

probability theory.  
The following section details our use of belief network 

technology for aggregating arguments for and against decision 
options. 
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4.2 Aggregation of Arguments 
An argumentation based decision-making framework like the one 
described here is functionally similar to classical rule-based 
experts systems, with the following exceptions:   
• It deals with more expressive knowledge in the form of 

arguments, than simply rules and a variety of dictionaries.  
• It incorporates an inference mechanism which is capable of 

aggregating arguments for and against decision options and 
therefore more general than simple forward chaining. 

While various types of classical, modal, and temporal logics can be 
used to represent and reason deductively with arguments, 
inferencing schemes within logics are insufficient for aggregating 
arguments, as the typical aggregation process is a meta-level 
reasoning involving sets of arguments. We propose here a scheme 
for aggregating arguments via Bayesian belief networks. The 
evidence propagation mechanism in belief networks implements 
both abductive and deductive inference schemes. While it is easier 
to elicit a set of arguments, constructing a belief network involves 
a more methodical approach to knowledge elicitation, and is 
usually much more time consuming. But a major advantage of an 
argumentation based framework is that support can be provided for 
making decisions even with a very few arguments, making the 
framework highly robust. But the propagation algorithm in a belief 
network fails to work even if a single entry within a CPT of the 
network is missing. 

As pointed out in (Korver and Lucas, 1993), due to differences 
in the type of knowledge represented and in the formalism used to 
represent uncertainty, much of the knowledge to building an 
equivalent belief network could not be extracted from a rule-based 
expert system. In our approach, we will be able to extract the 
network structure fully, but cannot extract every entry in the 
conditional probability tables. The missing probabilities for 
variable states are assumed by default to be equally distributed. 
There are various approaches (Krause, 2000) to learning belief 
networks from sample data sets. For example, the approach taken 
in (Heckerman, 1996; Ramoni and Sebastiani, 1997) considers 
cases where both network structures and probabilities can be 
learned. The major assumption for learning probabilities from a 
complete data set is that the distribution for the variable 
representing probability vectors is considered to be Dirichlet. On 
the other hand, the Gibbs sampling technique is often employed to 
deal with incomplete data sets. Such techniques can be easily 
incorporated within our approach to estimate the probabilities that 
were assumed by default, provided relevant sample data sets are 
available. 

Jitnah et. al. (2000) generates rebuttals in a Bayesian 
argumentation system based on normative and user models, 
represented in belief networks, that are manually constructed 
beforehand. The tutoring system proposed in (Conati et. al., 1997) 
automatically generates and updates belief networks during its 
interaction with the student for solving a problem. However, these 
approaches are only vaguely related to our approach to building a 
belief network, which is to be used for aggregating arguments, and 
does not seek for additional knowledge from the decision maker. 
We first construct fragments of networks using the arguments 
relevant to the decision-making task at hand. Note that, given a 
network fragment with a variable, and its parents and CPT, the 
fragment can be equivalently viewed as a set of arguments. For 

example, consider the network fragment in Figure 9, which states 
that player injury and rain together can determine the status of the 
game. 

0.05  0.20   0.70  0.1
0.95  0.80   0.30  0.0
0.05  0.20   0.70  0.1
0.95  0.80   0.30  0.0

Injury
Yes|No

Rain
Yes|No

Game
Yes|No

 

Figure 9: Example belief network fragment  

Each column of the CPT yields an argument for and an argument 
against a state of the variable Game. For example, if there is player 
injury and it rains then there is an argument for a game with 
support 0.05. 

injury & rain => support(game, 0.05) 
Since the arguments are probabilistic, corresponding to the above 
argument there will be another argument which states that if there 
is player injury and it rains then there is an argument against the 
game with support 1 − 0.05, that is, 0.95, yielding the following: 

injury & rain => support(not game, 0.95) 
The rest of the entries of the CPT can be translated to arguments in 
a similar manner. 

Continuing with our illustration of the network construction 
process from a set of arguments, consider the decision construct 
shown in Figure 4. Each argument with a single antecedent is 
translated to a network fragment containing two random variables 
corresponding to the antecedent and the consequent of the 
argument. For example, the argument 
transport_disruption => 

support(cancelled, 0.7) 
is translated to the network fragment on the left of Figure 10, 
which has two nodes or random variables: one for the antecedent 
transport_disruption and the other one for the decision 
option in the consequent. Since a particular decision option may 
occur in consequents of many arguments, their corresponding 
nodes in the network fragments are numbered to avoid ambiguity. 
Thus, the consequent of the above argument is translated to a node 
labeled Cancelled-1. 

Rain
Yes|No

On-1
Yes|No

Transport
Disruption

Yes|No

Cancelled-1
Yes|No

0.7  0.5
0.3  0.5

0.5  0.95
0.5  0.05

 

Figure 10: Belief network fragments by converting arguments 

The following entry in the CPT comes directly from the argument: 
( -1   |     )  
( -1   |     )  

P Cancelled Yes Transport Disruption Yes
P Cancelled No Transport Disruption Yes

= =
= =

0.7
0.3

=
=

 

The above type of probabilities will be equivalently written as the 
following: 
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( -1 |   )  0.7
(  -1 |   ) 0.

P Cancelled Transport Disruption
P not Cancelled Transport Disruption

=
=  3

 5

 

In case of no transport disruption, we have no information relating 
it to the cancellation of the game. Therefore, the probability 
distribution among the cancellation and non-cancellation states is 
even (uniform) given there is no transport disruption: 

( -1 |    )  0.5
(  -1 |    ) 0.

P Cancelled not Transport Disruption
P not Cancelled not Transport Disruption

=
=

 

Similarly, the network fragment on the right of Figure 10 is 
obtained by translating the argument 

not rain => support(on, 0.95) 
In this case, the above argument generates the following entries of 
the CPT: 

( -1 |   )  0.95
(  -1 |   )  0.05

P On not Rain
P not On not Rain

=
=

 

Since we cannot say anything about the state of the game given 
rain, the other two entries of the CPTs are as follows: 

( -1 |  )  0.5
(  -1 |  )  0.5

P On Rain
P not On Rain

=
=

 

An argument with multiple conditions is translated into a network 
fragment in a similar manner. Consider the following argument for 
postponing the game that has two conditions: 

bad_economy & free_slot => 
support(postponed, 0.7) 

The translated network is shown in Figure 11. Observe that we are 
only able to fill in only one column of the CPT and each of the rest 
of the columns is uniformly distributed. 

Bad
Economy

Yes|No

Free Slot
Yes|No

Postponed-1
Yes|No0.7  0.5  0.5  0.5

0.3  0.5  0.5  0.5  

Figure 11: Belief network fragment by converting arguments 
with multiple conditions 

After translating each individual argument to a belief network 
fragment, the next task is to aggregate arguments for and against 
each decision option. The heuristic used here is that the probability 
distribution of the two states of the variable corresponding to a 
decision option after the aggregation is proportional to the number 
of arguments for and against the decision option. For example, if 
we have three arguments for the decision option On via the three 
nodes On-1, On-2, and On-3, and no arguments against then we 
have the following probabilities for and against On: 

( |  -1,  - 2,  - 3)  1.0
(  |  -1,  - 2,  - 3)  0.0

P On On On On
P not On On On On

=
=

 

On the other hand, for example, if we have two arguments for the 
decision option On via the two nodes On-1 and On-2 and one 
argument against via the node On-3 then we have the following: 

( |  -1,  - 2,   - 3)  2 / 3
(  |  -1,  - 2,   - 3)  1/

P On On On not On
P not On On On not On

=
= 3

 

This is illustrated in Figure 12. 

On-1
Yes|No

On-2
Yes|No

On
Yes|No1  0.66  0.66  0.33  0.66  0.33  0.33  0

0  0.33  0.33  0.66  0.33  0.66  0.66  1

On-3
Yes|No

 

Figure 12: Belief network fragments by converting arguments 
for/against a decision option 

Now that we have network fragments for arguments for and 
against individual decision options, we need to combine these 
arguments to rank the decision options. For this, we create a 
random variable with the states corresponding to the decision 
options for the task at hand. In the context of our example, we 
create a random variable called Game with three states On, 
Cancelled, and Postponed. The variable has three parents 
corresponding to the three decision options. The decision options 
are ranked based on the aggregation of arguments for and against 
the decision options; the values of the CPT are determined 
accordingly. For example, if we have aggregated evidence for each 
of the three decision options On, Cancelled, and Postponed, then 
the probability distribution of the variable Game is evenly 
distributed as follows: 

(   | ,  ,  )  0.33 
(   | ,  ,  )  0.33
(   | ,  ,  )  0.33

P Game On On Cancelled Postponed
P Game Cancelled On Cancelled Postponed
P Game Postponed On Cancelled Postponed

= =
= =
= =

 

Note that we have the same probability distribution when we have 
aggregated evidence against each of the three decision options. On 
the other hand, for example, if we have aggregated evidence for 
each of the two decision options On and Cancelled, and aggregated 
evidence against the decision option Postponed, then the 
probability distribution on the states of the variable Game is as 
follows: 

(   | ,  ,   )  0.5 
(   | ,  ,   ) 0.
(   | ,  ,   ) 0

P Game On On Cancelled not Postponed
P Game Cancelled On Cancelled not Postponed
P Game Postponed On Cancelled not Postponed

5
.0

= =
= =
= =

 

This is illustrated in Figure 13. 

On
Yes|No

Cancelled
Yes|No

Postponed
Yes|No

Game
On
Cancelled
Postponed0.33  0.5  0.5  1  0.0  0  0  0.33

0.33  0.5  0.0  0  0.5  1  0  0.33
0.33  0.0  0.5  0  0.5  0  1  0.33  

Figure 13: Belief network fragment for aggregating arguments 
for/against decision options 

Figure 14 shows the combined network for aggregating the 
arguments of the decision construct in Figure 4. Such a network 
has three blocks: the Argument Block, the Axiom Block, and the 
Aggregation Block. The Argument Block is constructed out of the 
network fragments obtained by translating the arguments in the 
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decision construct. The Axiom Block, to some extent, implements 
a specific case of axiom 〈supd1〉F ∧ 〈supd2〉G → 〈supd1⊗d2〉(F ∧ G) 
(when F = G). The Aggregation Block implements the 
commitment rule in the decision construct. Mismatch is expected 
between the network in Figure 8 and that of in Figure 14 as any 
complete network of the former type is carefully constructed via a 
knowledge elicitation effort. (One can always incorporate 
additional knowledge from experts into the constructed network 
for improved prediction.) 

Rain
Yes|No

Radio
Commentary

Transport
Disruption

Bad
Economy

On-1
Yes|No On-2 Cancelled-1 Cancelled-2 Postponed-1

On
Yes|No Cancelled Postponed

Game Status
On
Cancelled
Postponed

Aggregation
Block

Argument Block

Ax
io

m
Bl

oc
k

Free
Slot

 

Figure 14: Combined belief network for argument aggregation 

In the absence of any evidence, no arguments are generated and 
the a priori probabilities of the decision options are as follows: 

(   )  0.33
(   )  0.32
(   )  0.35

P Game On
P Game Cancelled
P Game Postponed

= =
= =
= =

 

No evidence in the network has been posted at this stage, not even 
for any prior beliefs on the variables. Now, given that there is 
transport disruption and rain, the network ranks the decision 
options based on the following posterior probabilities (as shown in 
the figure): 

(    |   ,  )  0.37
(    |   ,  )  0.37
(    |   ,  )   0.26

P Game Postponed Transport Disruption Rain
P Game Cancelled Transport Disruption Rain
P Game On Transport Disruption Rain

=
= =
= =

=

) 0
) 0.34=

=

 

The dilemma occurs between the two decision options Cancelled 
and Postponed. If we now receive information about the 
unavailability of free slots then the network ranks the decision 
options as follows: 

( | , ,    
( | , ,    
( | ,  ,    ) 0.28

P Game Cancelled Disruption Rain not Free Slot
P Game Postponed Disruption Rain not Free Slot
P Game On Disruption Rain not Free Slot

= =
=
=

 
.38

The goal is active in since game status is not yet determined or 
determine_game_status is not yet believed. We are assuming here 
that the

0w

ArgL theorem prover is able to derive the negation of 
_ _bel mine statusdeter game< > from the current world by a 

mechanism similar to negation by failure. Belief network based 
aggregation process (as described in the last section) computes the 
supports for the candidates C1, C2, and C3 as follows: 

Based on the above probability distribution, the decision maker 
may decide to commit to the decision option Cancelled.  

5 An Example 
We present here a concrete example illustrating the proposed 
argumentation based decision-making process and belief network 
based aggregation. 

Suppose the current world  consists of the sentences in the 
syntax of 

0w
ArgL , shown in Figure 6 and Figure 7, obtained by 

translating the specification of the game_state decision, shown 
in Figure 4. In addition, we consider the following set of beliefs 
and knowledge (knowledge is defined as ) as part of the 
decision maker’s knowledge base at w0: 

F bel F∧ 〈 〉

{ , _rain bel transport disruption}〈 〉  
We cannot uniquely define the valuation on w  as the set of 
formulae that characterize  if it contains assertions that are only 
believed, such as 

0

0w
l tr _be ansport disruption〈 〉

ranspor

. An example 
valuation S on  is the following: 0w

r{ , _ ,t t disruption cancelle= }S ain d  
Since there are 3 candidates in the game_state decision (on, 
cancelled, and postponed) and we are dealing with probabilistic 
arguments, these three options will be considered mutually 
exclusive and exhaustive (which is not the case in general) for the 
purpose of aggregation: 

C1  = on, C2  = cancelled, C3  = postponed  
Consequently, there will be 3 possible worlds , , and , 
whose valuations are as follows (see figure): 

1w 2w 3w

1

2

3

( ) { , }
( ) { , }
( ) { , }

V w S on determine_game_status
V w S cancelled determine_game_status
V w S postponed determine_game_status

= ∪
= ∪
= ∪

 

Note that the presence of 〈 〉  in the 
knowledge base along with the argument  

_bel transport disruption

0.7bel transport_disruption sup cancelled→〈 〉 〈 〉  

derives 0.7sup cancelled  from the knowledge base. Now the 
argument 0.95bel rain sup on¬ →  states that P(On | not Rain) 
= 0.95. But we have rain in the knowledge base and our implicit 
assumption is P(On | Rain) = 0.5. Therefore, 0.5sup on  can be 
derived from the knowledge base. 

The relations Rb and Rs in the model definition are defined as 
follows: 

0 1 0 2 0 3

0 2 0

{ , , , , , }
{ ,0.95,{ } , ,0.5,{ }

b

s

R w w w w w w
R w w w w

= 〈 〉 〈 〉 〈 〉

1 }= 〈 〉 〈 〉
 

Note that determine_game_status is true in each of the possible 
worlds and therefore this is a goal - since the set of goal worlds is a 
subset of the set of possible worlds. This corresponds to the 
provability of goal determine_game_status〈 〉

ransport_disruption
 in the current world 

using bel t〈 〉 in conjunction with the formula 
bel transport_disruption goal determine_game_status→  

Total support for: C1  = 0.26, C2  = 0.37, C3  = 0.37 
The preference relation << among the set of possible worlds is 
derived as  <<  and  << . The maximally preferred 
possible worlds are  and . The relation 

1w 2w
w

1w
w

3w
2 3 gR  in the model 

definition is now defined as follows (Figure 15): 
0 2 0 3{ , , ,g }R w w w w= 〈 〉 〈 〉  
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1w

0w 2w

3w

bR

1w
0w

2w 3w
gR

 

Figure 15: Relations between the current and possible worlds 

This produces a dilemma. If the decision maker cannot gather any 
more evidence it may commit to  by preferring  to . This 
involves adding the beliefs cancelled, not on, and not postponed to 
the current state of the database depending on the strength of 
support for them. In the new situation the goal to determine the 
status of the game will no longer be active, as 
determine_game_status it will be believed due to the presence of 

2w 2w 3w

(bel cancelled on postponed
bel determine_game_status

〈 〉 ∧ ¬ ∧ ¬ →
〈 〉

)  

and the beliefs in cancelled, ¬on, and ¬postponed. Alternatively, 
if additional evidence is available to the decision-maker about the 
hosting club’s financial situation, say , that 
will increase the total support for C1 as follows: 

bel bad_economy〈 〉¬

Total support for: C1  = 0.26, C2  = 0.41, C3  = 0.33 
The revised valuation on each  will be as before except the 
additional evidence ¬  changes its truth value. The 
relations R

iw
bad_economy

s and Rg may be redefined as follows: 
0 2 0 1 0 2

0 2

{ ,0.95,{ } , ,0.5,{ } , ,0.5,{ } }
{ , }

s

g

R w w w w w w
R w w

= 〈 〉 〈 〉 〈 〉
= 〈 〉

 

Since  is the only goal world, the decision-maker considers 
as the committed world. Changing to the committed world 

from the current world involves adding 〈 〉 and 
,  to the database as the decision-

maker's beliefs. Adding to the database will trigger 
the decision for alternative activity (shown in Figure 5) and the 
decision making process continues as before. 

2w

on¬

2w

bel
bel cancelled

〈 〉 bel postponed〈 〉¬
bel c〈 〉 ancelled

6 Conclusion 
In this paper, we have presented ArgL , a logic for reasoning with 
probabilistic arguments, along with an approach for aggregating 
arguments via Bayesian belief networks. The semantics of ArgL  is 
given by enhancing the traditional possible world semantics with a 
new accessibility relation for support, and the soundness and 
completeness result is established. In the future, we plan to deal 
with more general forms of arguments than just propositional 
sentences, and enhance our proposed aggregation algorithm to 
aggregate temporal arguments via dynamic belief networks.  
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