
Encoding Schemes for a Discourse Support System for
Legal Argument

Henry Prakken and Gerard Vreeswijk1

Abstract. This paper reports on the ongoing development of a dis-
course support system for legal argument named PROSUPPORT. A
description is given of the system’s encoding schemes with which
the user can enter his or her analysis of the discourse. These schemes,
which are implemented as web browser forms linked to a database,
serve to capture support relations of propositions within arguments,
and dialectical relations between arguments. In addition, they sup-
port the recording of relevant argumentative and procedural speech
acts made with respect to these arguments, such as disputing or con-
ceding a claim, and allocating the burden of proof. The main issue
in developing these encoding schemes is how expressiveness of the
schemes can be reconciled with ease of use, on a suitable theoretical
basis.

1 Introduction

In several related areas of computer science there is a growing inter-
est in software support for such discourse processes as discussion,
negotiation, dispute resolution and collective decision making. Un-
like with ‘conventional’ decision-support tools (such as knowledge-
based systems), the task of such systems is not to produce or suggest
solutions to a problem with the help of domain knowledge, but to
help the participants in discursive interactions to structure their rea-
soning and discourse, so that they can make sense of the discourse
and interact effectively.

One professional area where such systems are of great poten-
tial use is the law. Participants in legal procedures (including alter-
native procedures such as online dispute resolution) often face the
complex task of managing the information they are confronted with
and the communication and reasoning they are expected to engage
in. Discourse support systems can provide important assistance for
these tasks: they could facilitate the structured inputting of a vari-
ety of discursive data, such as which claims have been made, con-
ceded or challenged, how the burden of proof was assigned, which
grounds and evidence have been adduced and counterattacked, how
these grounds and evidence can be assessed, and whether the parties
have respected the rules of procedure. The system could then usefully
display, combine and restructure this input, and compute the conse-
quences of the user’s evaluative decisions (e.g. who wins given a cer-
tain allocation of the burden of proof and assessment of evidence?).
Such systems could also support the (semi-) automatic generation
of case summaries or even verdicts. These functionalities can be put
to use in a variety of contexts. Individual users can be supported in
making their own analysis of the discourse, invisible for other partici-

1 Institute of Information and Computing Sciences, Utrecht Univer-
sity, PO Box 80089, 3508 TB Utrecht, The Netherlands, email:
{henry,gv}@cs.uu.nl

pants. The joint participants can be supported in their communicative
and disputational interactions. Or the supporting staff of a judge or
other official can be supported in their task to preprocess an analysis
of a case, and to pass on the results to the official. Finally, in online
versions of dispute resolution discourse systems could be a principal
means of interaction between the participants.

In the field of AI & Law there is a growing body of theoretical
research on discourse support for legal argument and legal procedure
(e.g. [3, 1, 4, 12]). However, substantial research on architectures
for implementation and on user experiences is still sparse. We know
of only two systems that have been implemented with practical use
in mind, viz. Loui’s Room 5 system [8] and Verheij’s ArguMed tool
[18], and one further system that is currently being implemented, viz.
Lodder & Huygen’s support tool for online dispute resolution [7].

In other application areas, such as meeting support and intelligent
tutoring, more practical experience with discourse support systems
has been gained (see e.g. [9, 16, 15, 2]). These experiences raise im-
portant issues for legal discourse support systems. One of the main
lessons learned is that it is very easy to overestimate the users’ abil-
ity and willingness to learn a new codification scheme [15, 2]. The
PROSUPPORTproject, on which this paper reports, intends to take
this lesson at heart. Its aim is to develop a discourse support system
for legal procedure that provides useful computational power to the
user but that is also easy to use.

Naturally, these two goals tend to conflict. The desire to offer use-
ful computational power to the user requires that the user’s input is
structured as much as possible, in a way that reflects the essential ele-
ments of legal discourse. The more these elements are made explicit
by the user, the more the system can do with it. However, the de-
sire to make these elements explicit requires complex representation
schemes for the user’s input, which leads to a tension with the lessons
on usability learned in other areas. Put simply, the more expressive a
language, the harder it is to learn and use. Resolving this tension in
an optimal way is one of the main research themes of the PROSUP-
PORTproject. In other words, the project aims to discover conditions
under which “formality” in interactive systems of the studied kind is
helpful instead of harmful (cf. [15]).

To elaborate on the desired expressiveness, the following features
of legal reasoning are especially relevant. Firstly, legal reasoning is
adversarial, which means that arguments pro and con a claim are
exchanged and conflicts between arguments must be resolved. Sec-
ondly, legal reasoning contains several specialised reasoning forms,
such as combining rules and precedents, attacking the application of
a rule, using and attack witness or expert evidence, reasoning about
causation, and so on. Finally, legal reasoning takes place in a proce-
dural context, where the notions of presumptions and burden of proof
are essential, and where not only arguments but also other speech acts



are important (such as disputing or conceding a claim and allocating
the burden of proof).

There is another tension to be resolved. Being a research project,
the system should have a sound theoretical basis, which means that
it should be based on plausible theories of the structure and ratio-
nality of argumentative discourse. Moreover, since we are dealing
with software specification, this theoretical basis should preferably
be formal. The latter is particularly important since discourse support
systems might be expected to compute the ‘current state’ of a dis-
pute, given the arguments, counterarguments and priority arguments
stated thus far. This requires a precise theory of what is to be com-
puted. Now a problem is that most of the available theories are quite
complex and subtle, especially when they are formalised. Therefore,
directly implementing these theories would again detract from the
usability of the system. A user can simply not be expected to master
subtle theoretical notions and distinctions, let alone to deal with for-
mal syntax or mathematical notions. Accordingly, a second research
challenge of the PROSUPPORTproject is to resolve the tension be-
tween naturalness and theoretical well-foundedness of the encoding
schemes offered to the user.

This paper reports on our current proposals to resolve these two
tensions, focusing on the encoding schemes for the user’s input. The
system is meant for Dutch civil procedure, and will be illustrated
with an application to an actual Dutch civil case. It is important to
note that in our design the interfaces for entering the user’s input and
for displaying the system’s output are independent. Once informa-
tion is inputted into the system, it is stored in an internal dataformat,
which supports different ways of restructuring and visualising the
information. This paper will not discuss interfaces for the latter.

As for the input encodng schemes, we propose a simple generic
encoding scheme for argumentative and procedural speech acts.
As for arguments, the scheme captures support relations between
propositions within arguments and dialectical relations between ar-
guments, but for the rest it imposes a minimum of structure on the
user’s input. We will show that this encoding scheme can be straight-
forwardly implemented as web browser forms linked with a database.
Furthermore, we will argue that the design can be theoretically based
on logics for defeasible argumentation and formal dialogue games
for dispute resolution. Finally, we will discuss some limitations and
possible extensions of our encoding schemes, and compare our pro-
posals with related research.

2 The application domain

In this section we briefly describe Dutch civil procedure as far as
relevant for present purposes. (This description is taken from [12]
and inspired by [6]).

A civil law suit is divided into a ‘pleadings’ phase, where the ad-
versaries plea their case before the judge and provide evidence when
assigned the burden of proof by the judge, and a ‘decision phase’,
where the judge withdraws to decide the case. The pleadings phase
is separated into a written and an (optional) oral part. In the written
part the parties exchange at least two and usually four documents (in
fact, the law is about to be changed to make this “usually two”). The
first is plaintiff’s Statement of Claim, which has to contain plain-
tiff’s claim plus his grounds for the claim. These grounds may be
purely factual: plaintiff may leave out the legal ‘warrant’ connecting
grounds and claim, as may both parties in all their other arguments.
Also, parties do not need to explicitly state common-sense knowl-
edge, and if they state such knowledge, they don’t need to prove
it. However, the judge decides what is common-sense knowledge.

Defendant replies with herDefence, which has to contain all of de-
fendant’s attacks against plaintiff’s claim and grounds. These attacks
may also concern issues of procedure, so that the procedural legal-
ity of a move can itself become the subject of dispute. The adver-
saries may then exchange further documents as long as allowed by
the judge. Each party may also ask to provide oral pleading. Dur-
ing the pleadings phase, the adversaries may dispute, concede and
retract claims, defer to the judge’s decision about a claim, support
claims with arguments, move counterarguments, and offer to provide
evidence for their claims. The judge assigns the burden of proof to a
party whenever appropriate, after which that party must provide ev-
idence (usually documents, or witness or expert testimonies). After
the pleadings phase has ended, the judge gives his/her verdict, bound
by the following rules of evidence.

An important principle of Dutch civil procedure is that the judge is
passive with respect to the factual basis of the dispute. For instance,
the judge must accept undisputed claims of the adversaries, and s/he
must evaluate the evidence and give the verdict on the basis of the
facts adduced by the parties, with the exceptions of generally known
facts and legal rules. Of course, this does not mean that the judge
cannot take factual decisions at all; s/he must still assess whether
the facts adduced by the adversaries sufficiently support their claims,
which may in turn also be factual.

As for allocating the burden of proof, the general rule is that the
parties bear the burden of proving their claims; however, the judge
may decide otherwise on the basis of special statutory provisions or
on grounds of reasonableness. Among other things, this means that
the burden of proof can be distributed over the parties, and that mak-
ing a claim does not automatically create a burden to prove it; cf.
[6, 11].

Given these characteristics of the procedure, our system should al-
low the following input. As for the adversaries, it should be possible
to express which claims the adversaries have made, and which argu-
ments they have stated in support of their claims or by way of coun-
terargument. Furthermore, the system should keep track of which
claims have been disputed, conceded, retracted or left to the judge’s
decision. Finally, the system should capture discussions on the pro-
cedural correctness of the adversaries’ input (including admissibil-
ity of evidence). As for the judge, the system should record his/her
decisions about such procedural correctness and about the burden
of proof, including the judge’s grounds for these decisions (when
given). The system should also record the judge’s completions of
the adversaries’ arguments with legal or commonsense knowledge.
Finally, the system should allow for the inputting of any other argu-
ment moved by the judge, especially his/her assessments of evidence
and conflicting arguments.

It is important to note that the PROSUPPORT system is not pri-
marily meant to support the dispute as it actually takes place. Rather,
the system is meant to support rational reconstructions of the dispute
made by an individual user, either during or after the dispute. For
instance, it could be used in the pleadings phase by one of the adver-
saries in preparing a further procedural document, or in the decision
phase by the judge (or his assistants), in preparing the final verdict.
It could also be used as an analysis tool by law students in a course
on legal argumentation.

3 An example case

Throughout this paper we will use the following example case, con-
cerning a dispute concerning ownership of a large holiday tent. Plain-
tiff (Nieborg) and his wife were friends of Van de Velde, who owned

2



a large tent at a camp site. At some point van de Velde mentioned

Figure 1. A claim form (expressing an argument).

that the tent was for sale for dfl. 850. Nieborg replied that he was
interested but could not afford the price. Van de Velde still made his
tent available to Nieborg, who in return helped van de Velde to paint
his house, while Mrs. Nieborg for some period assisted Mrs. van de
Velde with her domestic work. At some stage, Nieborg claimed that
they had done enough work to pay the sales price for the tent, after
which van de Velde became very angry and demanded the tent back
since, so he argued, he had never sold the tent but only made it avail-
able to Nieborg for the period that he himself did not need it. He had
done so since Nieborg had told him that he and his wife had never
had have enough money to go on holiday. When Nieborg refused to
return the tent, van de Velde, assisted by a group of people, threw
Nieborg’s son (who at that point was the only person present) out
of the tent and took it away. A few months later, van de Velde sold
the tent to defendant (van de Weg) and his wife. The sales price (dfl.
850) was paid with domestic work by Mrs. van de Weg in assistance
of Mrs. van de Velde.

In court, Nieborg (plaintiff) claims return of the tent to him on the
basis of his ownership. Van de Weg (defendant) disputes Nieborg’s
claim on the grounds that van de Velde had not sold the tent to
Nieborg but only given it on loan, and that the work done by Nieborg
and his wife was not done to pay the sales price but out of gratitude.

The relevant law is quite intricate and will not be explained here.
The main issue on which the outcome of the case depended was
whether van de Velde had sold the tent to Nieborg, so that Nieborg

was owner at the time of the violent events, or whether van de Velde
had just given the tent on loan, so that van de Velde had remained the
owner.

Figure 2. A claim disputation form (expressing a rebuttal).

Nieborg was allocated the burden of proving that Van de Weg had
obtained the tent on loan. To meet his burden, he provided three wit-
nesses, Van de Velde and two persons associated to van de Velde,
Gjaltema and van der Sluis. Nieborg’s main attack on van de Weg’s
evidence was that the witnesses were not credible: van de Velde
had a personal interest in a win by van de Weg, and all three wit-
nesses had declared something that Nieborg claimed was demonstra-
bly false (we will not elaborate the latter point). However, the judge
was convinced of their credibility, since their declarations supported
each other and since Van de Weg had failed to find counterwitnesses.
Nieborg therefore lost the case.

4 The discourse encoding schemes

We now turn to a description of the system’s input encoding schemes,
all based on the same generic scheme. In the present section we dis-
cuss their expressiveness and naturalness, while in the following sec-
tion we describe them from a software-architecture point of view.

4.1 The schemes

In the present phase of the project, we have chosen for a simple for-
mat of arguments. Essentially, arguments are ‘and trees’ where the

3



Figure 3. An argument comparison form (expressing a priority argument).

nodes are propositional atoms and the links are inference rules. The
tree’s root is the conclusion and its leafs are the premises of the ar-
gument. This setup enables us to let the user input elementary ar-
guments with a web form with a list of fields, as is illustrated by
Figure 12, which displays aClaim form expressing an argument for
plaintiff’s main claim. The top field is the argument’s conclusion and
the fields underGrounds are its premises. If more than four grounds
are needed, the user can tick themore groundsbox and push the
OK button. This scheme for arguments is recursive: elementary ar-
guments can be extended by replacing one of its grounds with a sub-
argument for that ground. This is achieved by ticking theelaborate
box next to the ground to be elaborated and pushing theOK button,
which returns another instance of the claim form, with the top field
filled by the to-be-elaborated ground. This box can also be used if
any other information about the ground is to be entered, such as that
it was disputed, or that a certain burden of proof was attached to it.

To describe the further setup of the claim form, the top row hy-
perlinks are links to various overviews of the discourse generated
by the system on the basis of previous input. Of these, as yet only
the StatementsandDiscussionlinks have been implemented. The
Statementslink returns a table with all statements made so far by
any of the participants, including useful ‘metadata’, such as who
made the statement, how the other parties responded, and so on. The
Discussionlink returns a visualisation of the discussion so far.

With the choice menuMaker , the user can enter who made the
claim, by choosing from the optionsPlaintiff , DefendantandJudge.

2 The actual system is in Dutch; the English screens in this paper are created
by manually editing the original HTML files.

Figure 4. Another claim form (with an argument based on witness
evidence).

With the choice menuSourcethe user can enter the case file docu-
ment in which the claim can be found and, if desired, make a hyper-
link to the relevant fragment in the document (this hyperlink feature
is not yet implemented). UnderAdversary’s responseandJudge’s
responsethe user can enter the eventual responses of the adversary,
respectively the judge to the claim. These options will be explained
in more detail below. Finally, at the bottom of the form there is a
largeRemarks field, for entering anything of interest that cannot be
entered in the other fields or menus.

To return to arguments, they can, depending on their role in the
dispute, take on several (non-exclusive) dialectical roles: they can be
initial arguments, counterarguments, priority arguments, and proce-
dural arguments. (Unless indicated otherwise, we below mean with
‘argument’ an elementary argument as expressed in a single form).

Counterargumentscan in turn be of two types.Rebuttingcounter-
arguments deny the conclusion of the attacked argument, whileun-
dercuttingarguments deny that the premises of the attacked argument
support its conclusion. An example of a rebuttal is that not plaintiff
but defendant owns the tent, since defendant bought and acquired the
tent from the previous owner (see Figure 2, which contains a rebuttal
of a (not shown) subargument for the first ground in Figure 1). An
example of an undercutter is an attack on the credibility of a witness
whose testimony was used in the attacked argument. Figure 5 dis-
plays an undercutter moved by plaintiff in attack of defendant’s ar-
gument displayed in Figure 4. In legal disputes undercutters are very
common, which is why we want to make the distinction between re-
buttals and undercutters explicit, even though we are aware that this

4



Figure 5. A support disputation form (expressing an undercutter).

complicates the encoding schemes and therefore might detract from
their usability.

The system cannot automatically recognise from an argument’s
syntax whether it is a counterargument, since its input forms do
not make negation explicit. Instead, the user must explicitly move
a counterargument as an attack on another argument.

For counterarguments moved by an adversary this happens as fol-
lows. First from theAdversary’s responsechoice menu the ‘dis-
puted’ option must be chosen (as in Figure 1). This returns an-
other choice menu, this time non-exclusive, with the options ‘dispute
claim’ and ‘dispute support’ (not shown). The first choice makes the
system return aClaim disputation form (See Figure 2, but note that
that form was not the result of disputing plaintiff’s main claim in Fig-
ure 1 but of disputing plaintiff’s first ground. This disputation was
entered in the subform (not shown) that elaborates this ground). The
top field of a claim disputation form contains the disputed proposi-
tion, the second field is for the formulation of the disputation, and
the remaining fields are for the grounds for the disputation. The sys-
tem then treats the conclusions of an argument and its rebuttal as
logical contraries. A choice for ‘dispute support’ makes instead the
system return aSupport disputation form (as in Figure 5, which re-
sulted from disputing plaintiff’s claim in Figure 4). Its top level field
contains a system-generated description of the undercut support (in
the current version an identifier plus the supported claim), its second
field can be used to fill in the formulation of the undercutter, and the
remaining fields can be used to enter the grounds for the undercutter.

A counterargument moved by the judge can be entered via the

choice menuJudge’s response — substantial, by choosing the op-
tion rejection(as in Figure 5). This makes the system return the same
menu as with a ‘disputed’ choice for the adversary’s response.

Figure 6. An implicit argument comparison by the judge

A priority argumentis an argument that adjudicates a conflict be-
tween a rebuttal and its target argument. A priority argument of the
judge can also be entered via the choice menujudge’s response —
substantial, by choosing the optioncomparison(see Figure 2). This
returns a list of all rebuttals moved against the argument expressed
on the form (not shown). The user can choose one of them, after
which the system returns anargument comparisonform (Figure 3).
The top field mentions the identifiers and conclusions of the two ar-
guments to be compared, the second field contains a choice menu
for stating a preference between the arguments (a special form of a
claim), and the rest of the form is as in the claim form. Note that thus
we have slightly enriched our propositional language with the means
to express preferences between arguments. In Figure 3 the judge ad-
judicates between two conflicting arguments concerning ownership
of the tent. The judge prefers plaintiff’s argument on the grounds that
it is based on a legal rule which is an exception to the rule used by
defendant’s argument.

We do not allow priority arguments to adjudicate between an ar-
gument and its undercutter: if an undercutter is regarded as incon-
clusive, this should be expressed with a counterargument against the
undercutter (as is done by the judge in Figure 6 with a rebuttal of
plaintiff’s undercutter in Figure 5). Such a counterargument can be a
rebuttal (e.g. “no, the witness is credible, since . . . ”) and then a prior-

5



ity argument can be moved on whether the undercutting argument or
its rebuttal prevails (in fact, we regard a rebuttal moved by the judge
as implicitly preferred over its target).

The last dialectical argument type is that ofprocedural arguments.
They are subdivided into arguments on procedural correctness and
arguments on allocating the burden of proof. A decision on proce-
dural correctness can be entered with the choice menuJudge’s re-
sponse — proceduralwith the defaultadmissibleand a second op-
tion inadmissible. To enter an argument for an inadmissibility de-
cision (which is optional), the boxelaboratecan be ticked, which
makes the system return a form namedViolation . Likewise for a de-
cision on the burden of proof, via the choice menuJudge’s response
— burden of proof, which, when elaborated, returns aProof bur-
den form.

Finally, we must allow for alternative arguments for the same
claim. Note that in a defeasible setting alternative arguments are not
equivalent to a single argument with a disjunctive premise, since such
a single argument does not capture that alternative arguments might
be based on different kinds of inference schemes. For instance, one
argument might be based on a statutory rule, while another argument
might be based on legal policy considerations. Accordingly, below
the list of grounds a boxalternative groundscan be ticked, which
returns an alternative claim form for the same claim. The alternative
argument is assigned a different identifier than the original one.

4.2 How logical syntax is avoided

In our encoding scheme the user does not have to manipulate logi-
cal syntax, since logical operators are either implicit or not available.
Above we already explained how negation is left implicit in the way
rebuttals and undercutters are moved. Conjunction is, of course, im-
plicit in the list of grounds. Furthermore, conditional operators are
avoided since arguments do not have to be propositionally valid, so
that conditional premises can be left implicit, paraphrased or named
(e.g. with the name of a statutory rule as in Figures 1 and 2). Also,
we think that there is no stong need for making disjunctions explicit.
Firstly, as we explained above, alternative arguments for a claim
(which are quite frequent) are not the same as an argument with
disjunctive premises. Secondly, when a rule contains a disjunctive
antecedent, we expect that in the great majority of cases to which the
rule is applied, one of the disjuncts will hold. Consider, for instance,
a social benefit law stating that being unemployed, ill or disabled en-
titles to a certain supplementary benefit. Finally, we expect that argu-
ments that crucially depend on quantifiers or modal (such as deontic)
operators will in practice be rare.

Of course, it is very likely that cases are found where our schemes
are too limited. However, we think a discourse support system should
not aim at 100% expressiveness, since that would conflict with the
goal of usability.

4.3 How Dutch civil procedure has been modelled

In Section 2 we listed the features that our encoding schemes should
capture. As can be seen from the above description, our schemes
support the entering of all relevant dialectical types of arguments,
as well as of all propositional attitudes (except retraction) that can
be expressed by the adversaries and procedural decisions that can be
taken by the judge.

We next recapitulate how the judge’s substantial decisions can be
entered. Completing the grounds of an adversary’s argument can be

simply done by adding a ground to an argument, ticking the corre-
spondingelaboratebox, and indicating in the elaboration form that
the ground was moved by the judge. If the judge accepts an adver-
sary’s claim on alternative grounds, the user can simply check the
box ‘alternative grounds’, enter such grounds and again indicate that
they were moved by the judge. If a judge has rejected a claim or
a claim’s support on certain grounds, the user must choose there-
jection option in theJudge’s response — substantialmenu, after
which the claim or support can be disputed in the way explained
above. Finally, the judge’s comparative decisions can also be entered
in a way explained above, by choosing thecomparisonoption in the
same menu. Note that the forms do not contain an explicit way to en-
ter that the judge has accepted a certain claim. Such acceptance can
be expressed either implicitly by doing nothing or, if the opponent
had moved a counterargument, by attacking that argument in one of
the available ways.

5 System architecture

We now describe the encoding schemes from a software-architecture
point of view.

5.1 Design philosophy

The system architecture is based on the idea that all aspects of a
case (issues, speech acts, source documents) are nodes in a network.
The basic component (node) of the system’s internal datastructure
is called aform. Each form is intended to express a speech act. A
form possesses several fields (or attributes), such as an ID, type, tar-
get, statement, maker, source, remarks, and typed pointers to other
forms, such as grounds, adversary’s response and judge’s responses.
Typically, each form uses only some of these attributes. For example,
the main claim will have no value for the attribute ‘target’ because
the main claim is the initial claim and by definition does not dis-
pute other claims (see Figure 1). And a claim disputation form will
have no adversary’s responses, since a disputation is itself such a
response (see Figure 2). When a form is presented to the user, un-
defined attributes are not shown, and the form takes its own “shape”
depending on its type. Furthermore, depending on the type of form,
its various attributes might be named in different ways. For instance,
the attribute ‘target’, which links the form to a preceding form, is in
a claim disputation form (Figure 2) called “disputed claim” and in
a violation form (not shown) called “inadmissible speech act”. And
the attribute ‘statement’, which indicates the proposition a form is
about, is in a claim form (Figure 1) called “claim” and in a ‘compar-
ison’ form (Figure 3) called “judgement”.

To prevent redundancy and preserve the logical structure of a case,
every form is unique, which means that the same thing is always ex-
pressed in the same way. For example, if the statement field of a
certain form is changed, and this form is used by formsA, B, andC,
(e.g. as ground for their statement) then this change will be reflected
if A, B or C are retrieved and presented on screen. Further, the sys-
tem suggests the user to reuse forms by presenting ID’s of existing
forms. If the user enters a form-ID rather than plain text, the system
will recognise this and will establish a link rather than create a new
form. This feature can be used, for instance, to reuse old statements
as grounds of a new argument.

As said above, form types are meant to stand for speech acts. We
currently distinguishClaim, Claim disputation, Support Disputation,
Comparison, Violation, andProof burden. For instance,Claimstands

6



for making a claim,Claim disputationfor disputing a claim, andVio-
lation for deciding a speech act procedurally inadmissible. For some
types of speech acts we do not want to allow for elaboration; such
speech acts are not captured by their own form, but simply as an at-
tribute of another form. For instance, conceding a claim is an attribute
of a claim form. Finally, the speech act of moving an argument, i.e.,
of stating grounds in support of a claim or disputation is left implicit
in the forms and how they are linked.

5.2 Aspects of human-computer interaction

Forms can be presented to the user in various formats. Currently, it
is possible to view forms in isolation, and to view them all together.
When viewed in isolation, all relevant attributes of a form are shown,
including the contents of the statement fields of connected forms,
and links to them. Showing the statement fields of connected forms
increases the cohesion of the network and enables to user to quickly
navigate through a case.

Viewing forms together enables a bird’s-eye perspective on a case.
Currently, the following global views are possible. The most obvious
presentation consists of a table of all statements, accessible via the
Statementshyperlink. This table can be sorted among various di-
mensions (e.g. ID number, type, time of input, time of modification).
or filtered through various criteria (e.g. “show all disputed statements
made by plaintiff for no burden of proof has yet been allocated”).
Further, it is possible to view a tex-based summary of the case (via
the Discussionhyperlink) and to view the case as a directed graph
(not yet incorporated in the above screens). It should be noted that
our architecture does not commit to a particular visualisation style of
the discussion; it equally supports text-based and graph-based styles.

One of the greatest challenges of our project is to keep the layout
of the input forms as simple as possible, while respecting the com-
plexity of the case. The approach that PROSUPPORTfollows is that
it is kept simple and fixed for beginners, while advanced users may
opt for more features and flexibility.

5.3 Current state of the implementation

The current version of our system is implemented in Mason
(http://www.masonhq.com ). Mason is a Perl-based web site
development and delivery engine. With Mason it is possible to em-
bed Perl code in HTML and construct pages from shared, reusable
components. Mason requires an Apache HTTP server with a software
package that embeds a Perl interpreter into the webserver (typically
mod perl ). Forms are written to and retrieved from a Berkeley type
data base, where forms are accessed by their ID.

As for the current state of implementation, the above-described
form-based datastructures have been implemented, as well as a first
method to navigate between the encoding screens. Of the overview
facilities, only theStatementsand Discussionfeatures have been
implemented. We have not yet implemented the function that is
meant to compute the ‘current outcome’ of a case.

Some elements of our implementation are still provisional. Firstly,
as for navigating between the forms, some problems still have to be
solved. One problem is that the user can mark more than one text field
for further elaboration. In such cases, more than one form needs to
be filled out and it is not immediately clear which of these forms that
should be, i.e., which of these forms must be presented next to the
user. One solution is to work with a prioritised agenda, called “forms
to be processed,” and then to enable the user to process these forms
as he sees fit. Secondly, our current way to visualise the discussion is

also still provisional; in fact, a full implementation of this feature is
an important research issue of the PROSUPPORTproject, which will
touch upon cognitive as well as technical issues.

6 Theoretical foundations

As said above, one goal of the PROSUPPORTproject is to investigate
how a natural encoding scheme for argumentative discourse support
can be developed on a sound formal basis. We think that such a basis
can be provided by combining two recent developments, viz. logics
for defeasible argumentation and formal dialogue systems for critical
discussion.

6.1 Logics for defeasible argumentation

Logics for defeasible argumentation (see [14] for an overview) are
one approach to the formalisation of so-called defeasible, or non-
monotonic reasoning. This is reasoning where tentative conclusions
are drawn on the basis of uncertain or incomplete information, which
might have to be withdrawn if more information becomes available.
Logical argumentation systems formalise this kind of reasoning in
terms of the interactions between arguments for alternative conclu-
sions. Nonmonotonicity arises since arguments can be defeated by
stronger counterarguments.

There are several reasons why argumentation systems are a
promising formal basis for argumentative discourse support systems.
Clearly, modelling inference as comparing arguments and counter-
arguments fits very well with the dialectical nature of argumentative
discourse. Moreover, argumentation systems often abstract to a large
degree from the logical language in which arguments are expressed
and from the rules according to which they are constructed. This
makes such systems particularly suitable for dealing with natural-
language input. For instance, above we saw how logical syntax can
be avoided and how hidden premises can remain implicit. Finally,
argumentation logics have been applied to a number of phenomena
that we think are important in argumentative discourse support, such
as the format of arguments as trees of inference rules (e.g. [10, 19]),
the distinction between rebuttals and undercutters (due to Pollock,
e.g. [10]), and priority arguments (e.g. [5, 13]). Note that all these
three phenomena are captured by our encoding schemes.

6.2 Dialogue games for dispute resolution

In the introduction we said that one use of formal foundations is as
a basis for computing the ‘current outcome’ of a dispute. Now it is
important to note that the outcome of a dispute depends not only on
the arguments that are stated but also on the various argumentative
speech acts and procedural decisions. For instance, if a premise of
an argument is disputed and no further argument for it is given, the
argument does not count in determining the outcome of the dispute;
likewise for an argument of which one premise was ruled to contain
inadmissible evidence. And for computing the effect of priority ar-
guments on the outcome of a dispute, it is important to know who
has the burden of proof: if two conflicting arguments are decided to
be equally strong, this benefits the adversary who does not have the
burden of proof.

So argumentative speech acts of various kinds interact in subtle
ways in determining the outcome of a dispute. Therefore, the formal
basis of a discourse support system cannot be confined to argumen-
tation logics; they need to be embedded in formal dialogue systems

7



for dispute, for instance, in the dialogue systems of [21]. For two
examples of work of this kind see [3] and [12].

Accordingly, we have set up PROSUPPORTsuch that each input in
the system can be formally translated as a move in such a dialogue
system (although we have not yet fully carried out this translation).
On the other hand, we have also designed the system such that the
user needs not be aware of this translation. The reason is that we
expect the intended users will find a WEB-form interface more nat-
ural than an explicit dialogue game style interface, which still seems
somewhat artificial.

7 Discussion of alternatives and remaining issues

As for arguments, the expressiveness of our system lies mainly in
two aspects: it can keep track of (often nested) support relations be-
tween statements, and it can identify the main dialectical relations be-
tween arguments. However, our language for expressing arguments is
(deliberately) very simple. We now discuss some possible enhance-
ments.

As explained, our system allows to distinguish three parts of (el-
ementary) arguments: their premises, their conclusion, and their in-
ference rule. (Actually, the nature of the inference rule is not made
explicit; instead it is only named). We could, of course, have im-
posed more structure. One scheme that comes to mind is Toulmin’s
well-known generic argument scheme [17]. However, we fear that
this scheme might be too rigid and too complex for practical use,
since it requires that for every argument a uniform distinction be-
tween data, warrant and backing is made explicit. Especially when
combined with the practical need to make the scheme recursive, this
often leads to quite complex encodings of legal arguments, as was
shown by [9].

In our opinion, a more promising refinement is the inclusion of
a set of optional specialised argument schemes. (“Optional” means
that such schemes could be offered as an advanced option to expe-
rienced users of the system.) Specialised argument schemes are an
important research topic within argumentation theory (see e.g. [20]).
For present purposes, some useful schemes are the use of types of ev-
idence (such as witness testimonies, expert reports, and documents).
Such specialised argument schemes are less rigid and abstract than
Toulmin’s scheme. Moreover, they come with specific sets of ‘criti-
cal questions’, which can focus a discussion. Finally, the logical in-
terpretation of argument schemes is rather straightforward: they nat-
urally map onto Pollock’s well-known notions of defeasible reasons
and defeaters. Note that a negative answer to a critical question at-
tached to an argument scheme will in fact be a counterargument, of-
ten of the undercutting type. For instance, Walton in [20] lists as one
of the critical questions of arguments from testimony, the question
whether the witness is credible. Above in Figure 5 we formulated a
negative answer to this question as an undercutting counterargument.

An important restriction of our generic scheme is that, as for sup-
port relations between propositions, it can only capture and-tree re-
lations between propositions. For certain types of reasoning, such as
abductive-causal reasoning or probabilistic reasoning, this may not
be suitable.

Finally, we have chosen not to model the concept of propositional
commitments in our system. Although this is a very important the-
oretical concept (cf. [21]), we think that violation of commitments
will in practice not often be an issue, while modelling them makes
the system more complex and thus detracts from the goal of usability.

8 Related research

In the legal field, so far been two implemented architectures for prac-
tical use have been described, viz. Loui’s Room 5 system [8] and
Verheij’s ArguMed [18]. A related system outside the legal field is
Belvedere [16], a system for teaching scientific argumentation. Fur-
thermore, Lodder & Huygen [7] report on the ongoing development
of their support tooleADR for simple procedures for online dispute
resolution.

All four systems support the user in drafting arguments and
counterarguments (Room 5 also supports the search of legal case
databases and the incorporation of retrieved case citations in argu-
ments). ArguMed is the only system that, besides rebuttals, also
supports undercutters; none of the systems supports priority argu-
ments. Unlike PROSUPPORT, these systems do not support the enter-
ing of other relevant speech acts. Room 5 and ArguMed are, like
PROSUPPORT based on logics for defeasible argumentation, and
have an implemented ‘current outcome function’ based on such a
logic. Belvedere andeADR are not based on formal foundations.
As for the appearance of the input forms, ArguMed and Belvedere
are graph-based, while Room 5 uses encapsulated text frames and
eADR uses a format similar to threaded discussion boards, where
replying messages can be either supporting or attacking replies (the
authors do not specify whether multiple supporting replies are meant
to be cumulative or alternative grounds). Neither of these projects
addresses the issue of the generation of discussion overviews in for-
mats different from their encoding schemes. Finally, Belvedere is the
only of these four systems that has been subjected to systematic field
studies.

Summarising, we think that, compared to these systems, our main
contributions are a separation of the layouts of the input and output
interfaces, an alternative, web-browser-based interface for input en-
coding schemes, and the modelling not only of arguments and their
dialectical relations, but also of argumentative and procedural speech
acts. The latter feature especially allows for an adequate modelling
of reasoning under burden of proof, which in legal applications is
very important. It remains to be seen whether this extra expressive-
ness makes the resulting extra computational power outweigh the in-
creased complexity of use.

9 Conclusion

In this paper we have investigated to which extent a theoretically
well-founded account of argumentative discourse can be imple-
mented as an argumentative discourse support system. We have es-
pecially focused on the encoding schemes with which the user can
enter his or her analysis of a dispute. The main question was how
such encoding schemes can, on the one hand, be natural and easy
to use and, on the other hand, support useful computational power
of the system. With respect to the latter, we have especially kept in
mind a feature that computes the ‘current outcome’ of a dispute.

We have argued that, if the expressiveness of the encoding
schemes is sufficiently restricted, a natural and useful implementa-
tion is possible with a world-wide popular software tool, viz. web
browsers, linked to a database. We have also argued that, with re-
spect to expressing arguments, a suitable restriction is to encode no
more than support relations between statements within arguments,
and dialectical relations between arguments. Moreover, we have ar-
gued that our encoding schemes can be given a formal basis in terms
of logics for defeasible argumentation and formal dialogue systems
for critical discussion.

8



Of course, our findings are still preliminary. For one thing, we
have so far tested our designs on the case files of only one case.
More importantly, so far we have not obtained any substantial user
experience, which yet is essential for testing usability and usefulness.
Nevertheless, we think the results so far are promising enough to
further develop our approach and conduct realistic field tests.

REFERENCES
[1] T.J.M. Bench-Capon, T. Geldard, and P.H. Leng, ‘A method for the

computational modelling of dialectical argument with dialogue games’,
Artificial Intelligence and Law, 8, 233–254, (2000).

[2] J. Conklin, A. Selvin, S. Buckingham Shum, and M. Sierhuis, ‘Facili-
tating hypertext for collective sensemaking: 15 years on from gIBIS’, in
Proceedings of the The Twelfth ACM Conference on Hypertext and Hy-
permedia (Hypertext 2001), New York, (2001). ACM Press. In Press.
Also available as Technical Report KMI-TR-112, Knowledge Media
Institute, The Open University, UK.

[3] T.F. Gordon, The Pleadings Game. An Artificial Intelligence
Model of Procedural Justice, Kluwer Academic Publishers, Dor-
drecht/Boston/London, 1995.

[4] J.C. Hage, ‘Dialectical models in artificial intelligence and law’,Artifi-
cial Intelligence and Law, 8, 137–172, (2000).

[5] R.A. Kowalski and F. Toni, ‘Abstract argumentation’,Artificial Intelli-
gence and Law, 4, 275–296, (1996).

[6] R.E. Leenes, ‘Burden of proof in dialogue games and Dutch civil pro-
cedure’, inProceedings of the Eighth International Conference on Ar-
tificial Intelligence and Law, pp. 109–118, New York, (2001). ACM
Press.

[7] A.R. Lodder and P.E.M. Huygen, ‘eADR: a simple tool to structure
the information exchange between parties in online alternative dis-
pute resolution’, inLegal Knowledge and Information Systems. JURIX
2001: The Fourteenth Annual Conference, pp. 117–129, Amsterdam
etc, (2001). IOS Press.

[8] R.P. Loui, J. Norman, J. Alpeter, D. Pinkard, D. Craven, J. Linsday, and
M. Foltz, ‘Progress on Room 5: A testbed for public interactive semi-
formal legal argumentation’, inProceedings of the Sixth International
Conference on Artificial Intelligence and Law, pp. 207–214, New York,
(1997). ACM Press.

[9] S.E. Newman and C.C. Marshall, ‘Pushing Toulmin too far: Learning
from an argument representation scheme’, Technical Report SSL-92-
45, Xerox Palo Alto Research Center, Palo Alto, CA, (1992).

[10] J.L. Pollock,Cognitive Carpentry. A Blueprint for How to Build a Per-
son, MIT Press, Cambridge, MA, 1995.

[11] H. Prakken, ‘Modelling defeasibility in law: logic or procedure?’,Fun-
damenta Informaticae, 48, 253–271, (2001).

[12] H. Prakken, ‘Modelling reasoning about evidence in legal procedure’,
in Proceedings of the Eighth International Conference on Artificial In-
telligence and Law, pp. 119–128, New York, (2001). ACM Press.

[13] H. Prakken and G. Sartor, ‘Argument-based extended logic program-
ming with defeasible priorities’,Journal of Applied Non-classical Log-
ics, 7, 25–75, (1997).

[14] H. Prakken and G.A.W. Vreeswijk, ‘Logics for defeasible argumen-
tation’, in Handbook of Philosophical Logic, eds., D. Gabbay and
F. Günthner, volume 4, 219–318, Kluwer Academic Publishers, Dor-
drecht/Boston/London, second edn., (2002).

[15] F.M. Shipman and C.C. Marshall, ‘Formality considered harmful: Ex-
periences, emerging themes, and directions on the use of formal rep-
resentations in interactive systems’,Computer Supported Cooperative
Work, 8, 333–352, (1999).

[16] D. Suthers, A. Weiner, J. Connelly, and M. Paolucci, ‘Belvedere: engag-
ing students in critical discussion of science and public policy issues’,
in Proceedings of the Seventh World Conference on Artificial Intelli-
gence in Education, pp. 266–273, (1995).

[17] S.E. Toulmin,The Uses of Argument, Cambridge University Press,
Cambridge, 1958.

[18] B. Verheij, ‘Automated argument assistance for lawyers’, inProceed-
ings of the Seventh International Conference on Artificial Intelligence
and Law, pp. 43–52, New York, (1999). ACM Press.

[19] G.A.W. Vreeswijk, ‘Abstract argumentation systems’,Artificial Intelli-
gence, 90, 225–279, (1997).

[20] D.N. Walton, Argumentation Schemes for Presumptive Reasoning,
Lawrence Erlbaum Associates, Mahwah, NJ, 1996.

[21] D.N. Walton and E.C.W. Krabbe,Commitment in Dialogue. Basic Con-
cepts of Interpersonal Reasoning, State University of New York Press,
Albany, NY, 1995.

9


