
UNCERTAINTY IN METAPHORICAL REASONING
Alan Wallington and John Barnden 1

Abstract. We present an approach and an associated computer
program (ATT-Meta) which can interpret novel uses of familiar
metaphors. ATT-Meta performs sophisticated reasoning with uncer-
tainty of a kind that is required for reasoning about the content
of metaphorical utterances. ATT-Meta’s handling of uncertainty is
qualitative and handles potential conflicts between different lines of
reasoning or arguments. It also uses a particular approach to speci-
ficity, which involves a complex examination of the complete argu-
ment structures supporting the conflicting hypotheses/arguments, as
a powerful tool for comparing arguments.

1 INTRODUCTION

A claim of much recent work in cognitive linguistics is that metaphor
plays a fundamental role in our ways of viewing and conceptualizing
the world, especially in the conceptualization of abstract notions such
as thought, emotion, purpose, scientific theory (e.g. [9]; [7]). It is ar-
gued that participants in a language community share sets of fixed
mapping links between source and target domains, using knowledge
of a source domain as if it were in reality knowledge about the tar-
get. We commonly talk for example ofgetting an idea into our mind,
even thought we know very well that minds are not containers and
that ideas are not objects that may occupy such containers. So much
is quite widely accepted (see [5] for an alternative). Furthermore,
speakers mayextendandelaborateon these source-to-target map-
ping links in a creative manner (see [10]). But, this creativity creates
a problem when we try to model the process of metaphor understand-
ing, especially for models based on the structure-mapping approach
to analogy (e.g. [4], [3]) since it suggests that new mapping links
need to be created on the fly whenever an elaboration of an exist-
ing metaphor introduces a new source domain concept for which
there is no existing mapping. Searching for new mapping links is a
computationally intensive process [14]. We have devised an alterna-
tive approach to metaphor interpretation and developed an associated
computer program ATT-Meta (e.g. [1]). Instead of searching for ana-
logues of what we call ’map-transcending’ elements, we argue that
metaphor interpretation requires only an ’economical’ set of transfer
rules mapping between source and target domains. Metaphors are ex-
tended through the use of, often extensive, source domain reasoning,
using exactly the same type of inference rules that would normally
be used in non-metaphorical discourse about the source domain.

If we are right, then a task for metaphor theory should include
designing systems that can reason. Now, in the real, commonsense,
imperfect, world, reasoning is non-monotonic and there are conflict-
ing arguments. The addition of more specific information about a
particular domain will frequently force the retraction of prior con-
clusions. Tentative inferences and conclusions are made even though
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knowledge will be imperfect or incomplete. Systems that can model
such uncertain reasoning are highly desirable in many NLP appli-
cations and become indispensable when the language used may be
metaphorical or not, for almost all metaphor can be seen as involving
a conflict between what is known to be true and what is claimed in the
metaphorical utterance. And, much of natural language is metaphor-
ical.

The need for uncertain reasoning systems to deal with natural lan-
guage and in particular with metaphor constrains the particular ap-
proach to uncertain reasoning that we take. It is hard to see where
the necessary numbers for prior and conditional probabilities would
come from (at least within a realistic time frame) that would inform
probabilistic approaches to uncertain reasoning. Yet qualifiers denot-
ing the uncertainty of a proposition abound in natural language. Con-
sider adverbial qualifiers such as ”usually”. Humans are able to re-
act quickly and without conscious effort to such qualifiers without
demanding any numerical measures. Consequently, our system uses
qualitative measures of certainty [11].

Thus our approach and associated computer program (ATT-Meta),
which we have demonstrated on a variety of examples taken from
real discourse, performs reasoning with uncertainty of a kind that is
firstly qualitative and secondly argument-based [12]. In other words,
hypotheses or reasoning queries are tagged with qualitative certainty
levels allowing an argument for a proposition with a high certainty
level to win out over an argument for its complement with a lower
certainty level. And furthermore, whilst the reasoning is essentially
logical consisting of ’if-then’ type rules, there is not one chain of
reasoning that proves or disproves a hypothesis. Instead, there will
be arguments for and against the hypothesis. Indeed, our system
will always explore arguments against any seemingly successful hy-
pothesis. And all of these arguments, for and against, are taken into
account when deciding whether to accept the hypothesis. Thus we
take a query or goal directed approach in which an initial query is
posed by the discourse surrounding a particular utterance. Then this
query and its converse are both investigated, by backward-chaining
’if-then’ rules, each with a particular qualitative certainty level, until
they are grounded in facts.

These arguments being investigated will involve information de-
rived from metaphorical, literal information, and information derived
from both, interacting in a complex manner. There will also be cases
where the qualitative certainty levels of the respctive arguments may
not decide between the two. In such case, our novel approach to
specificity (see section 4), in which a complex examination of the
complete argument structures of the competing hypotheses may de-
cide.

And the winning arguments may consist of cases where ’Target’
knowledge defeats inferences based on a metaphorical reading, but
there will also be cases, which are not widely recognized within the
metaphor literature, where inferences derived from a metaphorical
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reading may defeat default target assumptions (see [2]).
The ATT-Meta system is in a state of continuous improvement.

The system of reasoning has recently been greatly improved and
made much more general. Aspects of this new approach are de-
scribed in this paper.

2 AN EXAMPLE OF INFERENCE IN
METAPHOR

Our approach takes metaphor to be a way of seeing or describing
something as though it were something else. Thus, we assume that
the participants in a discourse involving a metaphor have implic-
itly made the following agreement: we know that TARGET is not
SOURCE but for the current purposes we shall pretend that TAR-
GET is a particular kind of SOURCE and consequently can license
the same kind of inferential links that other kinds of SOURCE would
license. We call this type of metaphorical reasoning based on a shared
pretence ”within-pretence reasoning” and the computational space in
which this reasoning takes place the ”pretence-space” or ”pretence”
as opposed to the ”reality-space” where reasoning about the target
takes place.

Consider the following example, which is slightly adapted from
one in Cosmopolitan magazine:

”In the far reaches of her mind, Anne believes that Kyle is
unfaithful”.

Anne’s mind is viewed within the pretence as a physical space
of the kind that can have ”far reaches”. We assume that certain as-
pects of the source domain (here, that of physical space) are mapped
onto corresponding aspects of the target domain (here, that of men-
tal objects and processes). The mapping is, however, not necessarily
complete - i.e., there may be aspects of the source domain that have
no corresponding mapping to the target domain. For example, we
assume that the understander may posses no direct mapping from
”the far reaches” to any aspect of Anne’s mind. Instead, using source
domain knowledge, inferences will be made about possible relations
between the ”far reaches” of a space and more central areas and some
of the conclusions reached may match mappings between the source
and target. In brief, and omitting many details, we assume that it can
be inferred that a distant object would be difficult to manipulate for
an individual such as Anne’s conscious self located in the centre of
the mind-space. Crucially, to arrive at this mapping from the original
statement, a process of inferencing was required and the inferences
made were uncertain.

This inferencing took place in the pretence-space using source do-
main information but, in order to properly integrate the metaphorical
utterance with the surrounding discourse, complex uncertain infer-
encing will also take place in the reality-space using target domain
information. To complicate things further, reasoning within the pre-
tence sometimes relies on target domain facts, -the existence of Anne
as a real person would be such a case- and this may give rise to fur-
ther conflict. This example concerning Anne and Kyle and the differ-
ent types of knowledge involved is one that we have implemented.
It involves a much more complex level of inferencing than has been
sketched here, but it can be demonstrated.

3 ATT-META’S MODE OF REASONING

ATT-Meta itself has no knowledge of any specific metaphorical
view and nor does it directly interpret natural language- it is sim-

ply a reasoning engine. However, it includes some built-in rules
about pretence, beliefs, qualitative degrees, etc. The user supplies
as data to ATT-Meta whatever target domain knowledge, source do-
main knowledge and metaphorical transfer relationships that s/he as-
sumes will adequately express the meaning of the metaphorical ut-
terance, the co-text, and the likely background knowledge. In par-
ticular the user supplies fact-rules that express the direct meaning of
the metaphorical utterance. This information is expressed as ’if-then’
rules, with fact-rules as a special case. Simplifying the rules some-
what for the purposes of this paper, a simple rule about birds would
be expressed as follows2:

IF bird(X) AND alive(X) THEN {presumed} can-fly(X).

Note that there are three main parts to a rule: theif part; thethen
part; and thequalitative-certainty-level. The symbol ’presumed’ is a
qualitative certainty qualifier and can also be read as ”by default”.
Penguins, of course, cannot fly and would be an exception to this
rule. If-then rules with a null IF part count as facts e.g.:

{certain} is-person(Anne).

ATT-Meta’s reasoning is entirely query-directed. Query-directed
reasoning, also called goal-directed reasoning, is a powerful tech-
nique, much used in AI (see, e.g., [13]). The process of reasoning
starts with a ’top’ query -i.e. a question as to whether some proposi-
tion holds or not. Queries are compared to known propositions for a
possible match. They are also compared to the ’then’ parts of rules.
In the case of ATT-Meta, these may be either standard or conversion
rules, and the facts may be stated as holding in the metaphor pretence
or in reality.

ATT-Meta tries to find evidence for and against the top query,
using the user-supplied knowledge and logical forms of the utter-
ance(s). In cases of conflict, a conflict-resolution mechanism (see
section 4) comes into play. If the top query contains variables ATT-
Meta will, in addition, try to find values for the variables.

A further source of uncertainty is that at any time, any particu-
lar hypothesis H being entertained by ATT-Meta, including the top
query, is tagged with a qualitative certainty level, one ofcertain,
presumed, suggested, possibleor certainly-not. Presumedmeans
that H is a default,suggestedmeans that there is evidence for H but
not (yet) enough to enable H to be a working assumption;possible
means that there is not yet certain evidence against H. When a hy-
pothesis is created (as a query) it is immediately given a certainty
value ofpossible. Reasoning may then upgrade or downgrade it as
appropriate.

When a rule is applied, the certainty it contributes to the result is
the minimum of its own certainty qualifier and the certainty levels
assigned to the hypotheses picked up by the condition part. Multi-
ple rule applications can support a given hypothesis - in this case the
maximum of the certainty values contributed by the different appli-
cations is used. When there is evidence to levelpresumedfor both
a query and its negation, then the conflict-resolution mechanism dis-
cussed in the next section tries to adjudicate the relative evidence
strength.

4 THE ’EVEN-THOUGH’ OPERATOR AND
CONFLICT RESOLUTION

Our approach to conflict resolution adopts the common approach that
a specific chain of reasoning supporting a hypothesis should defeat

2 In ATT-Meta, if and then conditions are expressed in an episode based logic
(broadly similar in spirit to the logical scheme of Hobbs [6]).
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a less specific chain of reasoning. For example, suppose that there
is a defeasible rule stating thatstudents are untidyand we know
that Ralph is a student. We might conclude thatRalph is untidy.
Now, suppose we know another fact, namely thatRalph is middle-
aged. And suppose further thatmiddle-aged students are tidy(IF
middle-aged(r) AND student(r) THEN tidy(r) ). We
might then conclude thatRalph is tidy, since the fact that he is
middle-aged and a student is more specific than the fact that he is
a student.

This much is common. However, we also introduce an ”even-
though” exception handling operator. This does not appear to be par-
alleled by work elsewhere on uncertainty, and is the dual of the idea
of expressing exceptions within general rules. Our approach has the
exceptions indicating in a content-based way what general lines of
reasoning they are exceptions to. Thus, we have a general reasoning
rule aboutbirds that theycan fly, and we might state the follow-
ing: a penguin can’t fly ’even-though’ it is a bird;. The effect of this
”even-though” operator is to further specify the class of birds in an
analogous manner to the further specification that being middle aged
imposed on studenthood. Consequently, the fact that something is a
bird and a penguin is more specific that the fact that it is a bird.

Note that under this approach, ’exceptionality’ is located at the
exceptions, not in modifications to general rules. In terms of system
building this makes for a much more modular and convenient ap-
proach since the introduction of a new exception will not require the
general rules to be modified.

In order to state the approach more formally, we employ the notion
of sets of sets of paths, or pathset-sets, capturing the notion of speci-
ficity by requiring the less specific be a subset of the more specific.
We shall first give a general definition of a path in order to introduce
the notion and then discuss a modification which replaces equality
between paths in our definition of subsets with subsumption.

Informally a path is a set of implicational links from a fact
that grounds the competing hypotheses e.g.penguin(tweetie)
upto, but not including, the hypothesis3 e.g. fly(tweetie) or
not-fly(tweetie) . Here, we shall enclose paths between an-
gled brackets. In the following discussion we shall ignore thepre-
sumeduncertainty-level. Also, we shall usually omit the predicate
argument if it is clear. Thus, with the following rule and fact:

IF penguin(X) THEN NOT-fly(X); penguin(tweetie)

the path of links will be:<penguin >.

Often an argument for a particular hypothesis will depend on a
conjunction of paths. Take the untidy student example. We cannot
argue that Ralph is untidy if he is a student since he is a mature
student and so tidy. The pathset supporting tidiness would thus be:

( <student >, <mature >) .

In other words, a set of paths, or a pathset, is required when
a conjunct is used in a rule. The pathset supporting the untidy
hypothesis is the singleton set

( <student >) .

Tidiness would win if we assume the following:

Pathset ’A’ is more specific than pathset
’B’ iff ’B’ is a subset of ’A’ and the
3 Or the point at which paths to two plus hypotheses diverge.

reverse is not true.

However, it would often be the case that there is one argument,
and thus more than one pathset, supporting a hypothesis. Thus our
algorithm needs to be broadened to include pathset-sets:

Pathset-set ’A’ is more specific than
pathset-set ’B’ iff for every member pathset
of ’B’, the pathset is a subset of some
member pathset of ’A’ and the reverse is not
true.

Let us now return to Tweetie. We can assume an inference from
the fact that Tweetie is a penguin to the hypothesis that he cannot fly,
via an inference rule that penguins cannot fly. However, another set
of implication links might be that if something is a penguin, then it
is a bird, and if something is a bird, then usually it can fly.

IF bird(X) THEN fly(X)
IF penguin(X) THEN bird(X)
penguin(tweetie).

We have an argument for ’NOT-fly’ consisting of the pathset-set:
(( < penguin >)) , and an argument for ’fly’ consisting of the
pathset-set:(( <penguin bird >)) .

Neither pathset is a subset of the other and so neither wins, which
is intuitively incorrect.

It is to solve this problem, that we propose the new ”Even-
Though” operator, which for current purposes we shall assume is
identical to the conjunct AND. Thus, we can add to the NOT-fly
pathset-set which previous contained only the pathset that made use
of the rule about penguins not flying, a pathset making use of the
following NOT-fly rule:

IF bird(X) AND penguin(X) THEN NOT-fly(X)
(ie if X is a penguin then X will not fly even-though X is a bird.).
With this new rule adding the ( <penguin

bird >, <penguin >) pathset to the old(( <penguin >))
pathset-set, the pathset-set for NOT-fly is as follows:

(( <penguin bird >, <penguin >), ( <penguin >)) .

Since the( <penguin bird >) pathset supporting the ’fly’ hy-
pothesis is a subset of the( <penguin bird >, <penguin >)
pathset supporting the ’NOT-fly’ hypothesis, but the reverse is not
true, the ’NOT-fly’ hypothesis wins.

Consider now a more complex case involving a subspecies of pen-
guins that can fly: ’flenguins’.

IF flenguin(X) THEN penguin(X)
IF penguin(X) AND flenguin THEN fly(X)
IF penguin(X) THEN bird(X)
IF bird(X) THEN fly(X)
IF bird(X) AND penguin(X) THEN NOT-fly(X)
flenguin(tweetie)

The pathset-sets for fly and NOT-fly are now as follows:

Fly (( <fl p b >), ( <fl p >, <fl >))
NOT-fly (( <fl p b >, <fl p >))

Let us ask whether fly is more specific than NOT-fly? The 2 ele-
ment pathset( <fl p b >, <fl p >) from NOT-fly cannot be a
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subset of the first, single element( <fl p b >) , pathset from the
fly pathset-set. And nor is it identical to the second, 2 element path-
set( <fl p >, <fl >) from the fly pathset-set. Consequently fly
cannot win. This seems to be the incorrect result.

Is NOT-fly, then, more specific than fly? The first pathset of fly:
( <fl p b >) is a subset of( <fl p b >, <fl p >) . However,
the second pathset( <fl p >, <fl >) is not a subset of( <fl
p b>, <fl p >) . Hence, NOT-fly does not win either.

Suppose we take a step back and consider why a winning path-
set wins. It wins if it is more specific than the alternative i.e if the
loser subsumes the winner. Consider now the two pathsets( <fl
p>, <fl >) and ( <fl p b >, <fl p >) taken from fly and
NOT-fly respectively. In the<fl p b > path, birds are less specific
than penguins, which are in turn less specific than flenguins. Conse-
quently, the path<fl p b > subsumes the path<fl p >.

Now reconsider the pathset( <fl p b >, <fl p >) from
NOT-fly that failed to match( <fl p >, <fl >) from fly when
matching required identity. Suppose we say that if a path sub-
sumes another path, then it matches it for the purposes of determin-
ing subsets. Under the new definition it is now a subset of( <fl
p>, <fl >) , since <fl p b > subsumes<fl p >, and <fl
p> subsumes<fl >.

Note that the reverse cannot also be true ie( <fl p b >, <fl
p>) is not more specific than( <fl p >, <fl >) , so NOT-fly is
not more specific than fly.

Space precludes further examples such as ’ill-flenguins’ that can-
not fly. However, it can be demonstrated that the new algorithm
makes the correct predictions.

5 CONCLUSION

The approach described in the previous section is not particular to
metaphorical reasoning, and was designed solely to deal with conflict
resolution between conflicting hypotheses. However, it has turned
out to have repercussions beyond what it was designed for and is
highly appropriate to our view of metaphor reasoning. Metaphors
might be viewed as specific ways of viewing something. ATT-Meta
takes source domain facts to be more specific than target domain
facts, and makes implicit use of the ’Even-Though’ operator when
introducing source domain facts. In other words, a source domain
fact holds Even-Though there are target domain facts that might be
thought of as contradictory. And this is important, since we assume
that all rules and facts can in principle be used in any reasoning space.
Without some means of protecting, for example, the source-domain
facts that Anne’s mind is a physical space, inferences about it are
likely to be defeated by the knowledge that Anne’s mind is not actu-
ally a physical space.

More generally, we would argue that specificity is a powerful
tool for comparing arguments. Our path-based approach approach
involves the complex examination of complete argument structures
supporting competing hypotheses.

Finally, with respect to metaphor theory, our approach makes
source/target conflict adjudication a complex argument-based matter
rather than on some simple principles such as the ’Invariance Princi-
ple’ [8] that target inferences should always defeat inferences based
on the source interpretation.
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