
The <TextCoop> Platform: Analyzing arguments in
procedural texts

Thomas De Filippo, Laureline Marsal, Patrick Saint-Dizier 1

1 Introduction and Aims

<TextCoop> is an environment for text semantics analysis. In a first
experimental stage, it is dedicated to procedure processing for test-
ing and evaluation. Processing procedures has obviously major ap-
plications. Besides instructions, procedures also contain a number of
forms of explanation, in particular warnings and advice. Therefore,
our platform can also be used as a tool for argument mining.

The goal of this document is to show the current possibilities of
the software, version V2, in Java, after a proof of concept realized
two years ago in Perl, based on scripts (Delpech et al. 2008).

Procedural texts are organized sets of instructions, they may also
be sets of advice, as in social behavior texts. In our perspective, pro-
cedural texts range from apparently simple cooking recipesto large
maintenance manuals. They also include documents as diverse as
teaching texts, medical notices, social behavior recommendations,
directions for use, assembly notices, do-it-yourself notices, itinerary
guides, advice texts, savoir-faire guides etc. Even if procedural texts
adhere more or less to a number of structural criteria, whichmay
depend on the author’s writing abilities and on traditions associated
with a given domain, we observed a very large variety of realisations,
which makes parsing such texts quite challenging.

Procedural texts explain how to realize a certain goal by means of
actions which may be temporally organized. Procedural texts can in-
deed be a simple, ordered list of instructions to reach a goal, but they
can also be less linear, outlining different ways to realizesomething,
with warnings, advice, conditions, hypothesis, preferences. They also
often contain a number of recommendations and comments of vari-
ous sorts. The organization of a procedural text is in general made
visible by means of linguistic and typographic marks.

Research on procedural texts was initiated by works in psychol-
ogy, cognitive ergonomics, and didactics, (Mortara et ali.1988)
(Adam 1987), (Kosseim 2000) to cite just a few. Several facets,
such as temporal and argumentative structures have then been sub-
ject to general purpose investigations in linguistics, butthey need
to be customized to this type of text. There is however very little
work done in Computational Linguistics circles. The present work is
based on a preliminary experiment we carried out (Delpech etali.,
07), (Aouladomar, 05) where a preliminary structure was proposed,
from corpus analysis.

Let us now give an illustrative example (translated from French),
extracted from the ’Do-It-Yourself Home’ domain, to show how texts
are processed:In the bedroom, it is necessary to clean curtains. These
are cleaned first with a vacuum-cleaner to remove dust, then,if they
are in cotton, they can be washed in the washing machine at 60 de-
grees; if they are white, it is even recommended to add some bleech

1 IRIT-CNRS Toulouse France, email: sstdizier@irit.fr

so that they look whiter. With some starch, they can be easilyironed.
In this text, the sequence:In the bedroom, it is necessary to clean

curtainsis analyzed as a justification of the actions to undertake. The
next portion:These are cleaned first with a vacuum-cleaner to re-
move dust, then, if they are in cotton, they can be washed in the wash-
ing machine at 60 degrees.is the instruction kernel, where the last
instruction is associated with a condition. Finally,If they are white,
it is even recommended to add some bleech so that they look whiter.
With some starch, they can be easily ironed.are two subordinated
clauses, analyzed as being in the rhetorical relation advice to the ker-
nel instructions.

Another example in parenthetical format (French gloss) is the fol-
lowing:
[instruction The first step consists in opening the computer box, then
to place it on a large, clean surface,

[advice where you have ample space to work comfortably,]
and then to withdraw all the cashes at the PC front.]

A more complex case is:
[[Goal To clean leathers, ]

[instruction choose specialized products dedicated to furniture,
[advice [instruction and prefer them colorless],

[support they will play a protection role, add beauty, and
repair some small damages.]]]]

In the framework of argumentation,<TextCoop> can be used as
a simple but efficient and flexible argument mining system. This is
realized via the description of text patterns that describethe linguistic
structure of arguments.

2 The software and the demo

<TextCoop> analyses procedures (dedicated to installation, main-
tenance, production, etc. over various technical and largepublic do-
mains) in French and in English. Texts come either from the Web or
from textual databases.<TextCoop> identifies structures and tags
them in XML, in particular:

• Titles (goals of the text) and their structure, it also indexes titles
(similarly to a search engine),

• Instructions and instructional compounds, temporal structure and
conditions,

• Prerequisites (materials, tools, prior knowledge, etc.),
• Explanation structures: advice, warnings, illustrations, hints, eval-

uations, etc.

<TextCoop> is based on linguistic analysis, knowledge representa-
tion and language processing. The environment is modular and flexi-
ble so that it can adapt to users’ needs and specificities via tailored in-
terfaces. The linguistic interface allows for the specification of gram-
mar rules or patterns (supporting gaps representing finite sequences



of symbols), and lexical and ontological data. It also includes mor-
phological analysis, and utilities such as web access, web page clean-
ing, and querying based on XML tags on the output structures.It is
being made compliant with current data representation norms, via its
planned embedding into the UIMA framework.

The rules and patterns include terminal (triggers as well as
grammatical words like connectors) and non-terminal symbols
(refering in general to ’local grammars’, e.g. temporal expressions,
instrument expressions, etc.). They also include gaps, standing for
finite strings of words of no present interest, XML tags (treated as
terminal elements), functions (for handling controls and for com-
puting attribute values for tags), and insertion point specifications,
designed to insert annotations at precise places. Symbols may also
be associated with attribute value structures to encode morphology,
syntax as well as semantic elements. An extraction rule for an advice
is, for example:

begin-mark, Pronoun, to be/modal, adv,
verb/advice-exp, gap, end-mark.

as in:It’s better to install a grounding electrode.
We advise you to use a waterproof box.

Similarly, for warnings, we have:

begin-mark, it, is, adverb,
important/necessary/compulsory/essential/
vital/fundamental, to, verb, gap, end-mark.

as in: It is very important to be aware of electrical grounding
safety.

It is important to wash your hands before entering the room.

<TextCoop> recently got a much more stable implementation us-
ing Java, and in particular we developed an engine based on JFLEX
and JCUP. This engine is based on an LALR(1) automaton that
we have adapted so that it can handle non-determinism and gaps.
Interfaces (user and administrator) have been defined so that it is
quite easy, via some training, to describe patterns and lexical data
for various semantic recognition treatments. At the functional level,
<TextCoop> V.2 allows to (via customization):

• Index large volumes of written procedures and query your
database,

• Enrich procedures, and make some controls on their contents(e.g.
via business requirements),

• Add useful information : list of tools, materials, etc.,
• Develop advice and precautions to take for a given task, via docu-

ment synthesis,
• Contribute to various types of applications, in particularrisk anal-

ysis and prevention as detected from instructions.

A typical XML output of <TextCoop> is given below in Fig.
1. <TextCoop> can be viewed as the kernel of the system, to
which dedicated add-ons or plug-ins can be added to realize spe-
cific, application-oriented tasks. These confer a strongervalue to this
system.

In terms of performances, we have at the moment the following
results. On a standard PC, windows XP, an average of 300Mo of
input texts is processed per hour, with a lexicon and ontology of a
few thousand terms and about 25 tagging patterns or rules. Wegive
below the performances for the major structures found in procedures.

As reported in (Fontan et al. 2008), we carried out an indicative
evaluation on a corpus of 66 texts over various domains, containing
262 arguments. Those texts where manually annotated by a trained
linguist, and the results were then compared with the systemoutput.
We get the following results for warnings:

conclusion support (3) (4)
recognition recognition

88% 91% 95% 95%

(3) conclusions well delimited (4) supports well delimited, with
respect to warnings correctly identified.

We also carried out an indicative evaluation on the same corpus
of 66 texts containing 240 manually identified advice. We getthe
following results for advice:

conclusion support (3) (4) (5)
recognition recognition

79% 84% 92% 91% 91%

The software demonstration will include:

• Introduction to the software and its aims and functions,
• Automatic extraction of arguments (essentially warnings and ad-

vice) from procedural documents (technical and social) in French
and English, attendees can propose texts, discussion of results
(and errors),

• Introduction of new rules or patterns in the system to recognize
new semantic structures,

• Demonstration of the adequacy of interfaces, of the introduction of
domain knowledge (via an ontology), feedback from the audience,

• Automatic construction of a list of advice/warnings for a given
topic.

An example of output is given below in Fig. 2.

REFERENCES
[1] Adam, J.M.,Types de Textes ou genres de Discours? Comment Classer les

Textes qui Disent De et Comment Faire, Langages, 141, pp. 10-27, 2001.
[2] Aouladomar, F., Saint-Dizier, P.,An Exploration of the Diversity of Nat-

ural Argumentation in Instructional Texts, 5th International Workshop on
Computational Models of Natural Argument, IJCAI, Edinburgh, 2005.

[3] Delpech, E., Murguia, E., Saint-Dizier, P.,A Two-Level Strategy for Pars-
ing Procedural Texts, VSST07, Marrakech, October 2007.

[4] Fontan, L., Saint-Dizier, P., Analyzing the explanation structure of proce-
dural texts: dealing with advice and Warnings, STEP conference, Venice,
August 2008.

[5] Kosseim, L., Lapalme, G.,Choosing Rhetorical Structures to Plan In-
structional Texts, Computational Intelligence, Blackwell, Boston, 2000.

[6] Mortara Garavelli, B.,Tipologia dei Testi, in G. Hodus et al.: lexicon der
romanistischen Linguistik, vol. IV, Tubingen, Niemeyer, 1988.

[7] Rosner, D., Stede, M.,Customizing RST for the Automatic Production of
Technical Manuals, in R. Dale, E. Hovy, D. Rosner and O. Stock eds.,
Aspects of Automated Natural Language Generation, LectureNotes in
Artificial Intelligence, pp. 199-214, Springler-Verlag, 1992.



<instruction> <verb sem=”action”> Energize</verb> the Aircraft Electrical Circuits<tool> from the APU</tool>
</instruction> <warning strength=”normal”> Make sure that circuit breakers are closed</warning>. <instruction>
<temp-exp type=”durative”> During the test</temp-exp>, <verb type= ”epistemic”> obey</verb> the instructions
shown<loc> on the terminal.</loc> </instruction> <instruction> <verb sem=”action”> Start</verb> the mod-
ule test.</instruction> </explanation type=”evaluation”> The test is in progress as<verb type=”communication”>
shown</verb> on the screen.</explanation> <instruction type=”check”> Indication that test is OK comes into view.
</instruction> <instruction> <verb sem=”action”> Close</verb> the OMS session.</instruction>

Figure 1. Extract of an annotated procedure

Fig. 2 Navitexte Output


