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Abstract. The main aim of this paper is to critically examine Pol-
lock’s critical-link semantics with variable degrees of justification.
We point out some possibly counterintuitive consequences of Pol-
lock’s definition of degrees of justification and propose a modified
definition which avoids these consequences. We then modify the AS-
PIC+ framework to allow for variable degrees of justification and
then apply our modified way to compute these degrees.

1 Introduction
In most current AI approaches on modeling Argumentation, the jus-
tification status of arguments and conclusions is an all-or-nothing af-
fair, but in many realistic applications, such as legal reasoning about
evidence or other applications of epistemic reasoning, it is natural to
regard them as justified to variable degrees. Pollock moddelled this
in his so-called critical-link semantics in [1] and [2].

Pollock introduced variable justification degrees to account for the
so-called “diminishing” effect of attempted defeaters that are weaker
than their target. In such cases Pollock wanted to model that the at-
tempted defeaters can still weaken the degree of justification of their
target. The present paper aims to contribute to such a study by criti-
cally examining Pollock’s proposal. In particular, we will argue that
Pollock’s approach in some cases gives counterintuitive outcomes,
then modify his account in a way that avoids these outcomes. At the
end, we will briefly discuss how Pollock’s ideas and our modifica-
tions can be incorporated in the ASPIC+ framework for structured
argumentation recently proposed by [3].

This paper is organized as follows. In Section 2, we first sum-
marize Pollock’s semantics. In Section 3, we then discuss some ar-
guably counterintuitive outcomes, present our revised definitions and
show that they avoid these outcomes. In section 4, we discuss how
to transfer the revised semantic into ASPIC+ framework. Finally, we
conclude in Section 5.

2 Semantics
In this section we present Pollock’s critical-link semantics with vari-
able degrees of justification, preceded by a brief overview of his [4]
multiple-assignment semantics.

2.1 Basic features
In Pollock’s account of defeasible reasoning, reasoning proceeds
from a knowledge base of classical-logic formulas by chaining rea-
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sons into inference graphs, where all reasons are either deductive or
defeasible. Only applications of defeasible reasons can be defeated,
and there are two kinds of defeaters: rebutting defeaters attack the
conclusion of a defeasible inference by favoring a conflicting con-
clusion, while undercutting defeaters attack the defeasible inference
itself, without favouring a conflicting conclusion.

More precisely, Pollock assumes as given a knowledge base of
first-order formulas and two sets of deductive and defeasible rea-
sons, which technically are inference rules. Pollock then considers
arguments, which are sequences of argument lines. The strength of
an element ϕ of the knowlege base is below written as δ(ϕ) while
the strength of a reason r will be written as ρ(r).

Definition 2.1. An argument line is a tuple (ϕ, r, L, s), where ϕ
is a proposition, r is the reason applied to infer ϕ, L is the set of
preceding lines from which ϕ is inferred, and s is the line’s strength3.

Definition 2.2. An argument line (ϕ, r, L, s) defeats an argument
line (ϕ′, r′, L′, s′) iff r′ is a defeasible rule, and s ≥ s′ , and
ϕ = ¬ϕ′ or ϕ = ¬r′ (here ¬r is shorthand for saying that the
antecedents of rule r do not support its consequent).

Definition 2.3. For any argument line l = (ϕ, r, L, s) (where L =
{l1, . . . , ln}) the strength s(l) is inductively defined as follows:

• If l takes ϕ from the knowledge base, then s(l) = δ(ϕ).
• Otherwise, s(l) = min{ρ(r), s(l1), . . . , s(ln)}.

With respect to accrual of arguments for the same conclusion, Pol-
lock proposed that if we have two separate undefeated arguments for
a conclusion, the degree of justification for the conclusion is the max-
imum of the strengths of the two arguments.

2.2 Multiple assignment semantic

In [4] Pollock considers inference graphs, where the nodes represent
the propositions inferred from which they are inferred, support-links
tie nodes to the nodes, and defeat-links indicate defeat relations be-
tween nodes. These links relate their roots to their targets. The root
of a defeat-link is a singe node, while the root of a support-link is
a set of nodes. He then proposes a labeling approach to define the
justification status of nodes and propositions.

Definition 2.4. A node of the inference-graph is initial iff its node-
basis and list of node-defeaters is empty, where

• The node-basis of a node is the set of roots of its support links.

3 Below the strength of argument line l will sometimes be written as s(l).



• The node-defeaters are the roots of the defeat links having the
node as their target.

Definition 2.5. An assignment σ of defeated and undefeated to a
subset of the nodes of an inference-graph is a partial status assign-
ment iff:

• σ assigns undefeated to any initial node;
• σ assigns undefeated to a non-initial node α iff σ assigns unde-

feated to all the members of the node-basis of α and σ assigns
defeated to all node-defeaters of α ;

• σ assigns defeated to a non-initial node α iff either σ assigns de-
feated to a member of the node-basis of α or σ assigns undefeated
to a node-defeater of α.

Definition 2.6. Assignment σ is a status assignment iff σ is a par-
tial status assignment and σ is not properly contained in any other
partial status assignment.

Definition 2.7. A nodeα of an inference graph is undefeated iff every
status assignment to the inference graph assigns undefeated to α;
otherwise α is defeated.

2.3 Critical-link semantics with variable degrees of
justification

The core idea of critical-link semantics [1, 2] is to build new
inference-graphs as subgraphs of the original inference graph and
assign various statuses to initial nodes in different cases. This idea is
formally defined as follows:

Definition 2.8. An inference/defeat-path from a node ϕ to a node θ
is a sequence of support-links and defeat-links such that (1) ϕ is a
root of the first link in the path; (2) θ is the target of the last link in
the path; (3) the root of each link after the first member of the path
is the target of the preceding link; (4) the path does not contain an
internal loop, i.e., no two links in the path have the same target.

Definition 2.9. A node θ of an inference graph is ϕ-dependent iff
there is an inference/defeat-path from ϕ to θ.

Definition 2.10. A circular inference/defeat-path from a node ϕ to
itself is an inference/defeat-path from ϕ to ϕ via a defeater of ϕ.

Definition 2.11. A defeat-link is ϕ-critical iff it is a member of some
minimal set of defeat-links such that removing all the defeat-links in
the set suffices to cut all the circular inference/defeat-paths from ϕ
to ϕ.

Definition 2.12. If ϕ is a node of an inference graph G, then Gϕ is
the inference graph that results from (1) deleting allϕ-critical defeat-
links from G and (2) making all members of the node-basis of ϕ
initial nodes in Gϕ and (3) making all ϕ-independent nodes initial-
nodes in Gϕ with stipulated defeat-statuses the same as their defeat-
statuses in G.

We next discuss how Pollock uses his critical-link semantics to de-
fine variable degrees of justification. A main motivation of the idea
that propositions should have variable degrees of justification is Pol-
lock’ notion of a diminisher. A diminisher is a defeater of a node
that is weaker than its target, which is able to diminish the degree of
justification of its target.

For the sake of the mathematics of diminishers, Pollock proposed
that there exists a function �4 such that given two argument lines
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that rebut one another, if their strengths are x and y, the degree of
justification for the conclusion of the former is x�y, while the degree
of justification for conclusion of y is y � x. He assumed that “the
degree of justification can be measured using real numbers, possibly
augmented with∞, i.e., ‘the extended real numbers’. More precisely,
the degrees of justification fall in some interval [o, θ], where 0 ≤
o ≤ θ ≤ ∞. o corresponds to no justification, and θ to perfect
justification, presumably only possible for necessary truths.”. Then
Pollock defined mathematical properties of � as follows:

Definition 2.13. [Mathematics of �]
(A1) � is continuous on the interval [o, θ].
(A2) If θ > α > β > o, then α > α � β > o.
(A3) If θ > α > β > γ > o , then α � β < α � γ and α � γ < β � γ.
(A4) If θ ≥ α ≥ β > o, then β � α = o.
(A5) If θ ≥ α > o, then α � o = α.
(A6) If θ > α and β and γ are in [o, θ], then (α�β)�γ = (α�γ)�β.

Pollock proved that if (A1) − (A6) hold, then � has a very simple
representation as follows:

Definition 2.14. [Representation of ∼]

x ∼ y =

{
x− y if y < x <∞
0 otherwise

(1)

Definition 2.15. [Computation of degree of justification]
(DJ) If P is inferred from the basis {B1, . . . , Bn} in an inference-
graph G in accordance with a reason of strength ρ, D1, . . . , Dk

are the P -independent defeaters for P , and Dk+1, . . . , Dm are
the P -dependent defeaters of P , then J(P,G) = min{ρ, J-
(B1, G), . . . , J(Bn, G)} ∼

[
max{J(D1, G), . . . , J(Dk, G)} +

max{J(Dk+1, GP ), . . . , J(Dm, GP )}
]
.

DJ is a computation for “collaborative defeat”, where the nodes
are defeated by both node-dependent and node-independent de-
featers.

3 Problem cases and modifications
In this section, we discuss some possible problems of Pollock’s
critical-link semantics with variable degrees of justification, by an-
alyzing some problem cases.

3.1 Problem case on diminishers
The first problem concerns some arguably counter-intuitive conse-
quences of the mathematical properties and representation of the
function �. We present an example and discuss why the outcomes
may be counter-intuitive, and then modify some properties of � and
choose another definition for ∼ to represent �.

Consider rebutting defeaters in Figure 1. Let P be “Jones says that
it is not raining”, R be “Smith says that it is raining”, and Q be “It
is raining”. Let us first assume that Smith and Jones as equally reli-
able. Then according to Pollock both Q and ¬Q should be defeated.
If we apply Definition 2.15 and again assume that the degrees of jus-
tification of the initial nodes are at least as great as the strengths of
reasons, then we have J(Q,G) = J(¬Q,G) = 0. Assume next that
Smith is much more reliable than Jones: then Q defeats ¬Q while
¬Q diminishes Q: by Definition 2.15 we have J(¬Q,G) = 0 and
J(Q,G) = J(R,G) ∼ J(P,G) > 0.

The arguably counter-intuitive consequence is that node¬Q has in
both cases the same degree of justification, namely, 0, while yet in the



second case the degree of justification of Q is higher than in the first
case. Thus intuitively, although node ¬Q is in the first case not ac-
cepted, it is still much more reliable than in the second case. Thus the
degrees of justification of nodes in cases of symmetric defeat should
be greater than the ones in cases of asymmetric defeat. Moreover,
the first case is similar to “zombie arguments”[5]: although the argu-
ments are defeated, they can still affect another arguments. In other
words, the node ¬Q in the first case still has ability to attack or sup-
port other nodes, but the node ¬Q in the second case does not. So it
is necessary to make a difference between the degrees of justification
of nodes in these two cases.

3.2 Problem case on “presumptive defeat”

The previous point can be further developed in a discussion of am-
biguity blocking vs. ambiguity propagating (by Pollock called “pre-
sumptive defeat”in [1]). Consider again Figure 1 but let now Q stand
for “Rain was predicted by the morning weather forecast”, P for
“Jones says that no rain was predicted by the morning weather fore-
cast”, R for “Smith says that rain was predicted by the morning
weather forecast”, S for “It will rain”and A for “rain was predicted
by the afternoon weather forecast”. Suppose again that the reason
strengths are at least as great as those of the initial nodes and sup-
pose that P and R are equally strong. Then according to Pollock’s
new approach the degree of justification of all of Q, ¬Q and ¬S
equals 0, so that ¬S cannot diminish or defeat S. However, accord-
ing to Section 3.1 the degrees of justification of Q and ¬Q should be
greater than 0, and this has the consequence that ¬S potentially has
the force to diminish or even defeat S.

Figure 1. Presumptive defeat

3.3 Problem case on undercutters

Next we discuss a problem of the computation principle DJ by argu-
ing that it gives an unnatural treatment of the effect of undercutters
on the degree of justification of their target. Consider an inference
graph with undercutter, let P be “Jones says that it is raining” and Q
be “It is raining”,R be “Smith says that John always lies” and P ⊗Q
be “John is lying” means “P does not guarantee Q”. Note that node
P ⊗ Q attacks the connection between node P and node Q, so the
strength of node P ⊗Q should arguably directly weaken the strength
of the reason from P toQ and only indirectly weaken the strength of
node Q. In other words, the strength of an undercutting node should
be in comparison with the strength of the reason it undercuts rather
than with the strength of the node it attacks. However, in Pollock’s
definitions this is not the case.

3.4 Modified definition of representation
In his final paper [6], Pollock reconsidered the problem of degrees of
justification. He measured degrees of justification using numbers in
the interval [0, 1], for which reason we henceforth choose the scale
as [0, 1]. From assumptions (A2) and (A4) it’s clear to show that
Pollock meant to design the function to capture the diminishers di-
minish nodes without completely defeating and diminishers dimin-
ish nodes with completely defeating. However, some assumptions of
mathematical properties of operator are counter-intuitive and should
be revised in order to avoid the above problems.

Firstly, according to the above analysis on diminisher and “pre-
sumptive defeat”. Assumption (A4) should be modified as follows:

(A4) If θ > α > β > o, then β � α = o.
(A4’) If θ > α = β ≥ o, then β � α ≥ o.
These two revised assumptions that the degrees of justification of

nodes in defeat cycles should be greater than 0.
Secondly, according to the above analysis of diminishers, the de-

gree of justification of diminished node reduces to real number 0
when the strength of the diminishing node with completing defeat-
ing is approaching to the strength of the diminished node. However,
the degree of justification of the diminished node would be definitely
greater than 0 in accordance with (A4’) if the strengths of the rebut-
ting defeaters are equal. Therefore, the representation is not contin-
uous on the whole interval [0, 1], since any point (x0, y0) that sat-
isfies x0 = y0 would be a discontinuous point. But Pollock wanted
that diminishing nodes without completely defeating and diminish-
ing nodes with completely defeating are, respectively, continuous.
Therefore, we use f(x, y) to present a diminishing node with de-
gree y that completely defeats a diminished node with degree x, and
use g(x, y) to present a diminishing node with degree y that does
not completely defeat a diminished node with degree x. We replace
assumption (A1) by saying that f(x, y) and g(x, y) are continuous.

Thirdly, the degree of justification for a diminished node should
be the strength of this node decremented by an amount determined
by the strength of the diminishing node. Moreover, the strength of a
node as conclusion is determined by the strength of its reason and
the strength of its node as premise. Rebutting defeaters or under-
cutting defeaters can both act as diminishers but their influences on
diminished nodes are different. Undercutting defeaters weaken the
strength of the reason they attack, while rebutting defeaters directly
weaken the strength of the node as conclusion. Therefore, the order
in which undercutting defeaters and rebutting defeaters as diminish-
ers are applied to an argument makes a difference to the degrees of
justification, and this in turn means that A(6) is invalid.

In sum, our analysis in Sections 3.1-3.3 makes that assumption
(A4) must be modified while assumptions (A1) and (A6) cannot hold.
We now define a new representation ∼ for operator �, which matches
the above-revised assumptions. Let us define:

x ∼ y =

{
x(1− y) if y ≤ x < 1

0 otherwise
(2)

It’s easy to prove that the new function satisfies the revisions of
Pollock’s conditions:

(A1) f(x, y) = x(1 − y) and g(x, y) = 0 are continuous on the
interval [0, 1]

(A2) If 1 > x > y > 0, then x > x ∼ y > 0.

(A3) If 1 > x > y > z > 0 , then x ∼ y < x ∼ z and
x ∼ z > y ∼ z

(A4) If 1 > x > y > o, then y ∼ x = 0.



(A4’) If 1 > x = y ≥ 0 then x ∼ y ≥ 0

(A5) If 1 ≥ x > 0, then x ∼ 0 = x

3.5 Modified definition of variable degrees of
justification

The revised idea for the problem case of undercutters is that the de-
gree of justification of node P equals the minimum of the strength of
reason after being diminished and the degrees of justification of its
premises. Then the computation for nodes not in a circular path can
be modified as follows: If P has P -independent defeatersD1,. . .,Dk

in G and has no P -dependent defeaters, then J(P,G) = min{(ρ ∼
max{J(D1, G), . . . , J(Dk, G)}), J(B1, G), . . . , J(Bn, G)}.

We next discuss the case where a node P is defeated by both P -
dependent defeaters and P -independent defeaters. We propose that
these two kinds of defeaters can unite to defeat node P with a double
counting, but computing it with P -independent defeaters firstly and
then continue to compute it with P -dependent defeaters. The final
computation can be modified as follows:

Definition 3.1. [Modified Computation]
If P is inferred from the basis {B1, . . . , Bn} in an inference-
graph G in accordance with a reason of strength ρ, D1, . . . , Dk

are the P -independent defeaters for P , and Dk+1,. . .,Dm are
the P -dependent defeaters of P , then J(P,G) = min

{(
ρ ∼

max{J(D1, G), . . . , J(Dk, G)}
)
, J(B1, G), . . . , J(Bn, G)

}
∼

max{J(Dk+1, GP ), . . . , J(Dm, GP )}

For instance, in Figure 2, node ¬S is S-dependent, node S is
¬S-dependent and node Q ⊗ S is S-independent. Let J(P,G) =
0.15, J(Q,S) = J(R,G) = 0.8 and the reasons are equally
strong: ρ = 0.9. Then J(Q ⊗ S,G) = 0.8, ρ ∼ J(Q ⊗
S,G) = 0.18, J(¬S,GS) = 0.15, J(S,G) = min{ρ ∼ J(Q ⊗
S,G), J(Q,G)} ∼ J(¬S,GS) = 0.18 ∼ 0.15 = 0.153, and
J(S,GS) = 0.18, J(¬S,G) = min{ρ, J(P,G)} ∼ J(S,G¬S) =
0.15 ∼ 0.18 = 0.

Figure 2. Inference graphs with collaborative defeaters

3.6 Solution to the problem cases

We now show that the new definition avoids the arguably counter-
intuitive outcomes we described above. We do this by analyzing the
example of presumptive defeat, which includes the problem case of
diminishers. Consider again the example in Figure 1. In the multiple-
assignment semantics in [4], ¬Q has the ability to support ¬S if ¬Q
is assigned undefeated in the partial status assignment and ¬Q has
no ability to support S if ¬Q is assigned defeated in the other partial
status assignment. With our new definition of ∼ the outcome is dif-
ferent. For simplicity, we again assume that the strengths of reasons
are at least as great as the degrees of justification of the initial node.
Then the computation of J(¬S,G) can be concluded as follows:

J(¬S,G) = min{ρ, J(¬Q,G)} ∼ J(S,G¬S) = J(¬Q,G) ∼
J(A,G) =

(
J(P,G) ∼ J(R,G)

)
∼ J(A,G).

We discuss the possible degrees of justification of ¬Q and
¬S. ¬Q has ability to support ¬S iff J(P,G) ≥ J(R,G).
Hence, J(¬S,G) > 0 iff ¬Q has ability to support ¬S and
J(P,G)(1 − J(R,G)) ≥ J(A,G). Otherwise, J(¬S,G) =
0. For instance, let J(P,G) = J(R,G) = 0.8, J(A,G) =
0.1 and the reason-strengths are equally strong: ρ = 0.9, then
J(¬Q,G) = min{ρ, J(P,G)} ∼ J(Q,G¬Q) = J(P,G) ∼
J(R,G) = 0.16; J(Q,G) = min{ρ, J(R,G)} ∼ J(¬Q,GQ) =
J(R,G) ∼ J(P,G) = 0.16; J(¬S,G) = min{ρ, J(¬Q,G)} ∼
J(S,G¬S) = J(¬Q,G) ∼ J(A,G) = 0.144.

Apparently, ¬Q has the power to support ¬S and ¬S therefore
has the ability to defeat or support another nodes. Moreover, if we
let J(P,G) < J(R,G) or J(P,G)(1 − J(R,G)) < J(A,G), the
justification of ¬S equals 0.

4 Variable degrees of justification in the ASPIC+

framework
The idea of critical-link semantics with variable degrees of justifica-
tion is a general theory and can be applied in other argumentation
formalisms as well. We will discuss the computation of degrees of
justification combined with ASPIC+, using the new notion of an ar-
gument graph. We regard the degree of justification of an argument5

as the variable degree for accepting or rejecting the argument from
a cognitive perspective. We next give some new definitions that are
useful in our modification associated with ASPIC+.

Definition 4.1. [Argument strength] V is a function to evaluate the
strength of an argument with conditions as follows:

• if A ∈ K, then V(A) = η(A), where η is a function that as-
signs the degrees of acceptability of the premises in an argument,
modeled as η(A) : 2Prem(A) → [0, 1].

• if A is the form A1, . . . , An →/⇒ ϕ, then V(A) = min
{
V(A1)

, . . . ,V(An), ν
(
Conc(A1), . . . , Conc(An) →/⇒ ψ

)}
, where ν

is a function assigns the degree of support from antecedent to con-
sequent in a strict or defeasible inference, modeled as: ν(δ) : δ →
[0, 1), where δ ∈ Rs and ν(δ) = 1, where δ ∈ Rd.

Definition 4.2. [Maximal proper subargument] Argument A is a
maximal proper subargument of B iff A is a subargument of B and
there does not exist any proper subargument C of B such that A is a
proper subarugment of C.

Definition 4.3. [Direct attacking] Argument A directly attacks ar-
gument B iff A rebuts or undercuts B on B; otherwise A indirectly
attacks B.

Definition 4.4. An argument graph G is a labeled, finite, directed,
bipartite graph, consisting of argument nodes and attacking links in-
dicating attacking relationships between argument nodes and proper
subargument links indicating connecting subargument relationships
between an argument and its proper superarguments.

The attacking links relate their roots to their targets and the root of
an attacking link is an attacker in the graph, while the proper subargu-
ment links relate their roots to their targets and the root is the proper
subargument of its target or the target is the proper superargument of
its root in graph. In the diagrams of argument graphs, argument are

5 We assume that the degree of justification of one argument equals the degree
of justification of its conclusion.



displayed as dots, attacking links are indicated using ordinary arrow-
heads, while proper subargument links are indicated using closed-dot
arrowheads. The initial arguments in G can be defined as follows:

Definition 4.5. An argument is initial in G iff it is not the target of
any attacking link or proper subargument link.

Consider and Pollock’s inference graph in Figure 1. We assume
arguments in ASPIC+ framework as B : B1 ⇒ ¬S; B1 : B2 ⇒
¬Q; B2 : P ; C : C1 ⇒ Q; C1 : R; D : D1 ⇒ S; D1 : A. We
show the arguments in Figure 3. Note that C directly rebuts B1 and
indirectly rebuts B, B directly rebuts D. Moreover, nodes B2, C1

and D1 are initial arguments.

Figure 3. Argument graph

Definition 4.6. An argument path P (A,B) from argument A to
argument B in graph G is a sequence of attacking links and proper
subargument links 〈L1, . . . , Ln〉, such that

1. Argument A is the initial argument that there is no argument in
graph G attacks A;

2. there exists arguments B1, . . . , Bn−1, such that L1 = (A,B1),
Li+1 = (Bi, Bi+1), and Ln = (Bn−1, B), where (A,B) means
the attack link or proper subargument link from A to B.

Next we will make our approach simpler than Pollock’s by defin-
ing the notions of a basic set and its extension instead of the notions
of node-dependent and node-critical links.

Definition 4.7. The notions of basic set and critical extension can
be defined as follows:

1. A set of attack links is a basic set of argument A in graph G iff
removing all members of the set suffices to cut all cycles from A
to A.

2. A set of attack links is a critical extension of argument A in graph
G iff it is a minimum basic set of argument of A in graph G.

Proposition 1. For any argument A in a circular path, there exists
at least one basic set of A.

Proposition 2. For any attack link L in a circular path P , there
exists at least one critical extension containing L.

Corollary 1. If an attack link does not occur on any circular path,
then it does not belong to any critical extension.

Definition 4.8. Given a graph G, the new graphGA is the argument-
graph that results from removing all members in all critical exten-
sions in graph G and making all arguments B1, . . . , Bn which are
not in a defeat cycle initial with J(Bi, GA) = J(Bi, G).

Definition 4.9. [Justification computation]

1. If A is initial in G, then J(A,G) = V(A,G).
2. If A is initial in GA, and B1, . . . , Bn are direct rebutters of A

or undermining attackers in cycles from A to A, then J(A,G) =
V(A,G) ∼ max{J(B1, GA), . . . , J(Bn, GA)}.

3. If A is not initial in G, and A1, . . . , An are the maximal
proper subarguments of argument A, and ρ is the strength
of Toprule(A), B1, . . . , Bi are direct undercuters of A and
Bi+1, . . . , Bm are direct rebutters of A or undermining at-
tackers in cycles from A to A, then J(A,G) = min

{(
ρ ∼

max{J(B1, G), . . . , J(Bi, G)}
)
, J(A1, G), . . . , J(An, G)

}
∼

max{J(Bi+1, GA), . . . , J(Bm, GA)}.

We define x ∼ y = x(1 − y), if y ≤ x < 1, otherwise, x ∼ y = 0
and max{∅} = 0. The computation is for argument attacked both
by direct undercutters and direct rebutters or underminers in cycles.
It unites and double counts the computation for arguments only at-
tacked by direct undercutters and the computation for arguments only
attacked by direct rebutters or underminers in cycles.

Finally, we illustrate the new definition by computing the degree
of justification of argument B in Figure 3. Let J(B2, G) = 0.8,
J(C1, G) = 0.8, J(D1, G) = 0.1 and the reasons are equally
strong: ρ = 0.9. It is clear that C directly rebuts B1, then from
(DJ), it follows J(B1, G) = min{ρ, J(B2, G)} ∼ J(C,GB1) =
J(B2, G) ∼ J(C1, G) = 0.16; we also have B directly rebuts
D, then from (DJ), it follows J(B,G) = min{ρ, J(B1, G)} ∼
J(C,GB) = J(B1, G) ∼ J(D1, G) = 0.144; Simi-
lar, J(B,GD) = 0.16; J(D,G) = min{ρ, J(D1, G)} ∼
J(B,GD) = J(D1, G) ∼ J(B,GD) = 0.

5 Conclusion
In this paper we studied the modelling of variable degrees of jus-
tification in argumentation. We pointed out some arguably counter-
intuitive consequences of Pollock’s critical-link semantics with vari-
able degrees of justification and then presented some modifications
that avoid these outcomes. Moreover, to illustrate the generality of
Pollock’ approach and our modifications, we also discussed how they
can be combined with the ASPIC+ framework. In future work we aim
to investigate the properties of our definitions and to study their ap-
plication to realistic examples, including problems of legal reasoning
with evidence.
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