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Abstract. The paper presents an analysis of linguistic diversity in
learner language used in argumentative tutorial dialogueson mathe-
matical proofs conducted in German. The analysis is based ontwo
corpora of dialogues with a tutoring system simulated in a Wizard of
Oz setup. The purpose of the analysis is to inform and motivate the
choice of computational input processing methodology for an intelli-
gent tutoring system for proofs. After lexical normalisation of math-
ematical domain-specific vocabulary, learner utterances are classi-
fied with respect to, first, linguistic “modality” (natural language
vs. symbolic notation) and second, their dialogue function. Proof-
contributing utterances are further classified with respect to their
function in the proof under construction (proof steps, declarations of
proof strategy to be adopted, etc.) and the type of content verbalised
in natural language (logical connectives only, domain-specific vocab-
ulary, etc.) Linguistic diversity is quantified in terms of type-token
ratios over the normalised linguistic patterns, frequencyspectra, and
pattern-vocabulary growth curves. The analysis shows thateven this
seemingly linguistically predictable argumentative domain of mathe-
matical proofs is characterised by a large variety of linguistic patterns
of expression along all the above dimensions and by a large number
of idiosyncratic verbalisations. Interesting is, moreover, a conversa-
tional character of the non-proof-contributing utterances, suggesting
learners’ informal attitude towards the computer-based dialogues and
high expectations on the input interpretation resources. This calls for
a combination of shallow and deep semantic processing methods for
the discourse in question: shallow pattern-based approaches for con-
tributions which do not add to the proof and deep lexicalisedgram-
mars for the proof-relevant content, in order to optimise coverage.

1 MOTIVATION

Mathematical proof can be consideredthe argumentative discourse
par excellence: premises must be stated, claims justified, hypothe-
ses discharged, only valid rules of inference followed. Narrative flair
is of secondary importance; rigorous argumentation in mathematical
proofs is characterised by a highly stylised language whichcombines
formal symbolic expressions and worded natural language structures.

While proofs are central to mathematics, learners often lack skill
in constructing proofs or even lack understanding of the need for
proof in the first place [12, 1, 28]. Since proofs cannot be learnt other
than by practice, the idea of building automated proof tutoring sys-
tems is appealing. Indeed, a number of mathematical assistance sys-
tems have been adapted for teaching proofs [30, 7, 17]. Thesesys-
tems, however, rely on controlled template-like input of proof struc-
turing language and a formal language for mathematical expressions.
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EXCHECK [24] was a notable example of a system in which learn-
ers could use some natural language, however, its successor, EPGY
TPE [25] uses menu-based input and a formula editor. This tendency
toward controlled formal input as an interaction mode goes against
findings on cognitive difficulties experienced by students while learn-
ing to do formal mathematics which show that the formal language
and notation are among the major obstacles in proofs [26].

Support for open-ended natural language in a proof tutoringsys-
tem requires that the language understanding component be capable
of translating the learners’ input into a symbolic representation re-
quired by a deduction system responsible for reasoning. With the
view to provisioning such input processing capabilities wecollected
corpora of learner proofs constructed in a flexible natural language
interaction (in German) with an anticipated dialogue-based tutoring
system, simulated by a human. In this paper we present an analysis
of linguistic diversity of the language the learners used inthe course
of the interaction. The purpose of the analysis is to inform and mo-
tivate the choice of computational input processing methodology for
an intelligent tutoring system for proofs.

Outline The paper is organised as follows: In Section 2 the proof
corpora are briefly presented. Section 3 describes data preparation:
encapsulation of mathematical symbolic content, turn, utterance and
word tokenisation, and textual normalisations. Section 4 presents a
classification of utterance types. Section 5 presents the analyses: Lin-
guistic diversity has been quantified in terms of (i) type-token ra-
tios over normalised linguistic patterns along different dimensions,
(ii) frequency spectra, and (iii) pattern-vocabulary growth curves.
The results are discussed in Section 6.

2 PROOF TUTORING CORPORA

Our analysis of proof tutoring is based on two corpora of tutorial di-
alogues on mathematical theorem proving collected in Wizard of Oz
experiments [19]. The domain of mathematics in the first corpus, C-I,
was naive set theory and in the second corpus, C-II, binary relations.

In both experiments dialogues were conducted in German using
the keyboard and a graphical user interface. The subjects were in-
structed to enter proof steps, rather than complete proofs at once, to
encourage interaction with the system. The set theory corpus con-
tains dialogues conducted in three experimental tutoring conditions:
minimal feedback, didactic, or socratic tutoring strategy. Tutor’s ver-
bosity of the minimal feedback condition was limited, whilein both
other conditions as well as in the second experiment, the subjects
and the tutors were unconstrained in terms of the linguisticrealisa-
tion of their turns. The binary relations corpus contains dialogues
conducted in two experimental study-material conditions:subjects



Table 1. Basic descriptive statistics on the two corpora.

Set theory Binary relations
(C-I) (C-II)

Proof tasks 3 4
Tutors 1 4
Subjects/Sessions 22 37
Turns 775 1906
Mean No. of turns per session (SD) 35 (12) 51 (19)
Subjects’ turns (% of No. turns) 332 (43%) 927 (49%)
Mean No. of subjects’ turns per session (SD) 15 (6) 25 (10)
Mode No. of attempted proofs per subject 3 2

received background reading on binary relations presentedin either
a verbose or a formal variant. In both experiments, the simulated sys-
tems followed strict turn-taking rules on the subject’s endof the in-
teraction: the interface did not allow the subjects to contribute a new
turn until the wizard completed their turn.

The graphical user interface of the simulated system enabled
button- and/or keyboard-based insertion of symbolic mathematical
expressions. Unlike in the experiments described in [13] nostruc-
tured editor for the symbolic expressions nor a dedicated area for
mathematical formula entry was provided; mathematical expressions
could be smoothly interleaved with natural language, as in mathe-
matical narrative discourse in textbooks or scientific publications.
The interactions were logged in plain ASCII format. Mathematical
symbols were logged as their corresponding unicode numerictokens
(in C-I) or as their LATEX commands (in C-II).

To illustrate the type of data under analysis here, in Figure1 we
give excerpts from both corpora which are illustrative of the type of
language used.2 C-I comprises 775 turns (332 student and 443 tutor
turns, respectively), C-II has 1906 turns (927 student and 979 tu-
tor turns). Table 1 summarises basic descriptive information on the
experiments and the collected corpora. More details on the proof tu-
toring corpora and the experiments can be found in [35, 5].

3 PRE-PROCESSING

3.1 Pre-processing mathematical expressions

In both corpora, mathematical expressions were identified semi-
automatically, using a regular-expression grammar. The grammar
comprised a vocabulary of letters, mathematical symbols (unicode
or LATEX), brackets, braces, delimiters, etc. The parser’s outputwas
manually verified and corrected where necessary.3 The quantitative
analyses were conducted based on turns and utterances in which
the identified mathematical expressions have been substituted with
a symbolic token MATHEXPR.4

2 Here and in further examples, German utterances have been translated into
English preserving sense and grammatical structure as close as possible.

3 We do not report precision results on mathematical expression identifica-
tion and parsing as this is not the focus of this paper. It is assumed that an
end-to-end system provides an entry method for mathematical expressions
which would enable clear, possibly real-time, identification of mathemati-
cal expressions. This could be accomplished by explicitly defining “math
mode” delimiters, for instance, as key combinations indicating the start and
end of mathematical expression strings or as textual delimiters analogous
to the $-symbols in LATEX.

4 As shown in [33] utterances normalised this way can be parsedusing a lex-
icalised grammar if the information on the expression’s type – term or for-
mula – is known. With this in mind, we therefore also classifythe symbolic
expressions into one of the following categories: i) atomicterms: VAR,
for set, relation, or individual variables, ii) non-atomicterms: TERM or
TERM (object-forming operation symbols appearing in isolation(as in

C-I

S1: WennA ⊆ K(B), dannA ∩ B = ∅
(en.If A ⊆ K(B), thenA ∩ B = ∅)

. . .
S5: inK(B) sind allex, die nicht inB sind

(en.in K(B) are all x which are not inB)
S6: DaA ⊆ K(B) gilt, alle x, die inA sind sind auch nicht inB

(en.SinceA ⊆ K(B) holds, allx which are inA are also
not inB)

. . .
S8: Dann gilt auch: Allex, die inB sind, sind nicht inA

(en.Then it also holds: Allx which are inB are not inA)

C-II

S1: Ich moechte zunaechst(R ◦ S)−1 ⊆ S−1 ◦ R−1 beweisen
(en.First I would like to prove(R ◦ S)−1 ⊆ S−1 ◦ R−1)

S2: Sei(a, b) ∈ (R ◦ S)−1

(en.Let (a, b) ∈ (R ◦ S)−1)
. . .
S6: Nach der Definition von◦ folgt dann(a, b) ist in S−1 ◦ R−1

(en.By definition of◦ it follows then that(a, b) is in S−1 ◦ R−1)
. . .
S8: Der Beweis geht genauso wie oben , da in Schritt 2 bis 6 nur

Aequivalenz umformungen stattfinden
(en.The proof goes exactly as above since in step 2 to 6
there are only equivalences)

S9: wie kann ich jetzt weitermachen?
(en.how can I continue now?)

. . .
S11: 1. Fall: Sei(a, b) ∈ R

(en.1. Case: Let(a, b) ∈ R)
S12: Ich habe mich vertippt. Korrektur: Sei(a, z) ∈ R

(en.I made a typo. Correction: Let(a, z) ∈ R)
. . .
S17: Ich habe gezeigt:(a, b) ∈ (R ∪ S) ◦ T ⇒ (a, b) ∈ R ◦ T∨

(a, b) ∈ S ◦ T
(en.I have shown:(a, b) ∈ (R ∪ S) ◦ T ⇒ (a, b) ∈ R ◦ T∨
(a, b) ∈ S ◦ T )

. . .
S24: Dann existiert einz, so dass(a, z) ∈ (R ∪ S)

und(z, b) ∈ T
(en.Then there exists anz such that(a, z) ∈ (R ∪ S)
and(z, b) ∈ T )

S25: Nach Aufgabe A gilt(R ∪ S) ◦ T = (R ◦ T ) ∪ (S ◦ T )
(en.By Exercise A(R ∪ S) ◦ T = (R ◦ T ) ∪ (S ◦ T ) holds

. . .
S29: Da die Mengenvereinigung kommutativ ist, koennen wir

dieses in student 25 einsetzen und erhalten die Behauptung
(en.Since set union is commutative, we can use what’s in
student 25 and obtain the theorem)

S30: nach Aufgabe W und dem Beispiel-Beweis gilt . . .
(en.By Exercise W and the example proof it holds . . .

. . .

Figure 1. Examples of learner utterances from both corpora



Examples of utterances from Figure 1 before and after mathemat-
ical expression pre-processing are shown below:

(1) DaA ⊆ K(B) gilt, alle x, die inA sind sind auch
nicht inB [C-I S6]

Da MATHEXPRFORMULA gilt,
alle MATHEXPRVAR, die in MATHEXPRVAR sind
sind auch nicht in MATHEXPRVAR

(2) Nach der Definition von◦ folgt dann(a, b) ist in
S−1 ◦ R−1 [C-II S6]

Nach der Definition von MATHEXPRTERM folgt dann
MATHEXPRTERM ist in MATHEXPRTERM

3.2 Turn and utterance pre-processing

Turns in both corpora were sentence-tokenised based on a standard
set of end-of-sentence punctuation marks. The output of thesen-
tence tokeniser was manually verified and corrected where necessary.
Word-tokenisation was performed using a standard tokeniser.

Turns were then segmented into utterances. While a sentenceis
typically defined as a unit of speech containing a subject anda predi-
cate, there is no precise linguistic definition as to what constitutes an
utterance. Broadly understood, an utterance is an intentional, mean-
ingful communicative act in an interaction. An utterance may con-
sists of a word, a phrase, or a complex sentence with embedded
clauses. It may form a complete turn, but a turn may also consist
of more than one utterance. For the purpose of this study the notion
of an utterance was operationalised as follows:

• An utterance never spans more than one turn or one sentence;
• Multiple clauses conjoined with conjunctions (“und” (en.and),

“oder” (en. or), “aber” (en. but), “weil” (en. because), “für
(en. for), “also” (en. so), “wenn” (en. if ), “als”/“wann”
(en.when), etc.) were considered one utterance;

• Multiple clauses conjoined without conjunction words werecon-
sidered separate utterances;

• “If-then” constructions, also those omitting the words “if” and
“then”, were considered a single utterance;

• The following non-sentential fragments, not containing a subject,
were considered utterances: noun phrases, discourse markers (also
inserts, such as “acha”, “oh”, “naja”, “schoen” (en.nice)), collo-
quial subject-drop phrasings in indicative and interrogative mood,
single question words and ellipted questions (for instance, “Fer-
tig?” (en.Done?)), politeness phrases (such as “sorry”, “Danke”),
exclamatives (for instance, “Weitere Hilfe!” (en.Further help!)),
non-sentential answers to questions, including acknowledgments
(“ok”, “klar” (en. that’s clear)), yes/no answers.

Examples of tokenised multi-utterance turns from Figure 1 are
shown below:5

(3) 〈u〉|Dann|gilt|auch|:|Alle|x|,|die|in|B|sind|,|sind|nicht|
in|A|〈/u〉 [C-I S8]

(4) 〈u〉|1.|Fall|:〈/u〉
〈u〉Sei|MATHEXPR|〈/u〉 [C-II S11]

(5) 〈u〉|Ich|habe|mich|vertippt|.|〈/u〉
〈u〉|Korrektur|:|〈/u〉
〈u〉|Sei|MATHEXPR|〈/u〉 [C-II S12]

the example utterance (2)), etc. and iii) formulas, FORMULA, for truth-
valued statements,FORMULA (statement-forming operators appearing
in isolation), etc.

5 | marks token boundaries.〈u〉 and〈/u〉 mark utterance boundaries.

3.3 Textual normalisations

Following extensive research into the properties of spokenand writ-
ten discourse [10, 6], recent studies of computer-mediatedcommuni-
cation (CMC) – or electronic discourse more generally – haveshown
that, much like spoken language differs from written language, the
language of type-written computer-mediated communication shares
some properties with spoken language, however, it also possesses
textual and linguistic characteristics which are not typical for stan-
dard written language [23, 11, 18, 3]. Among those non-standard
characteristics are the frequent use of abbreviations and acronyms,
words and phrases written in all capitals or all lower-case,exten-
sive use of certain punctuation marks and lack or incorrect (random)
use of other punctuation (for instance, excessive use of theexclama-
tion mark, lack of or incorrect use of commas, lack of valid end-of-
sentence punctuation), and the use of emoticons. Also type-written
tutorial dialogue shows qualities which are found both in spoken
and written language and those of CMC. It is prone to textual ill-
formedness due to the informal setting and the telegraphic nature of
the linguistic production.

In order to avoid the effects of CMC-specific qualities of thelearn-
ers’ productions at the utterance-level, prior to the quantitative analy-
sis learners’ utterances were normalised with respect to certain writ-
ing mechanics phenomena (alternative spelling variants, capitalisa-
tion, punctuation) and with respect to the wording of commonabbre-
viations. Moreover, lexical normalisations were performed on lex-
emes and phrases in order to avoid spurious diversity due to domain-
specific terminology and context-specific references. Different lexi-
cal realisations of single and multi-word domain terms and conven-
tional speech acts were substituted with symbolic tokens represent-
ing their lexical, in case of the former, or communicative, in case
of the latter, types. Discourse-specific references were likewise nor-
malised. Details of textual normalisations are summarisedbelow.

Spelling The German umlaut diacritics were replaced with their
underlying vowels and an “-e”. Theeszettligatures were replaced
with double “s”. Spelling mistakes were identified and corrected us-
ing the German aspell, a Linux spell-checker, whose generaldictio-
nary has been extended with a custom dictionary of relevant domain
terms (e.g. “Distributivität”/“Distributivitaet” (en.Distributivity));

Punctuation Repeated consecutive occurrences of the same punc-
tuation symbols were replaced with a single occurrence (“!!!” → “!”;
“....” → “.”, etc.) Punctuation in abbreviations, missing or incorrect,
has been normalised (e.g. “b..zw”→ “bzw.”, “d.h” → “d.h.”). In the
final analysis inter-sentential and end of sentence/utterance punctua-
tion was ignored;

Abbreviations Upon correcting punctuation different correct and
incorrect lexical variants of common abbreviations were substituted
with symbolic tokens. These included, BSP for different spelling and
capitalisation variants of “z.B.” (en.e.g.), BZW for “bzw.” (en. re-
spectively), OBDA for “o.B.d.A.” (en. without loss of generality),
DH for “d.h.” (en. that is), QED for “q.e.d.”, ST for “s.t.” (en.such
that), OK for “ok”, “oki”, “Okay”, etc.

Common speech acts and inserts Conventional expressions of
gratitude, such as “Danke”, “VIELEN DANK” and apologies, for in-
stance, “Tut mir leid”, “Sorry”, “Verzeihung”, were substituted with



tokens THANKYOU and APOLOGY respectively. “Ja”/“Nein” re-
sponses were substituted with the token YESNO. Conversational in-
serts and other discourse markers such as “So”, “Na ja” were substi-
tuted with the token DISCOURSEMARKER.

Domain terms and domain-specific references Different lexical
variants of nominal and adjectival domain terms which were included
in the preparatory material have been mapped to a single form, DO-
MAINTERM. If single-word domain terms were part of a multi-
word term which can be considered a named entity, the multi-word
term was normalised. For instance, “DE-MORGAN-1”, “DeMorgan-
1”, “DeMorgan-Regel-1”, “de morgan regel 2” all mapped to DO-
MAINTERM, as did “Distributivitaet von Vereinigung ueber den
Durchschnitt” as a multi-word term (a name of a statement/theorem),
as well as “symmetrisch” as a single-word term.

Non-deictic references to proof exercises, such as “Aufgabe W”
(en.Exercise W), theorems provided in the preparatory material, such
as “Theorem 9” or “9”, parts of proof structure, such as “Schritt 1”
(en.Step 1), or turns in the dialogue history, such as “Student 25”6,
were mapped to the token REFERENCE.

Different conventional wordings used to signal the end of a proof,
such as “quod erat demonstrandum”, “was zu zeigen war” (en.which
was to be shown), “woraus der beweis folgt” (en.from which the
proof follows), “Damit ist der Beweis fertig” (en.which completes the
proof), etc., were mapped to the token corresponding to the “q.e.d.”
abbreviation, QED.

Capitalisation The analyses presented in Section 5 were per-
formed on corpus utterances normalised as above with case-
insensitive matching.

Examples of utterances from Figure 1 pre-processed as outlined
in this section are shown below:

(6) dann existiert ein MATHEXPR so dass MATHEXPR und
MATHEXPR [C-II S24]

(7) nach REFERENCE gilt MATHEXPR [C-II S25]

(8) da DOMAINTERM DOMAINTERM ist koennen wir
dieses in REFERENCE einsetzen und erhalten die Behaup-
tung [C-II S29]

(9) nach REFERENCE und REFERENCE gilt MATHEXPR
[C-II S30]

4 CLASSIFICATION OF UTTERANCE TYPES

Learner contributions in a tutoring interaction may fulfillseveral
functions. As illustrated in the dialogue excerpts in Figure 1, learn-
ers contribute not only proof steps – complete or incomplete(C-I S5:
a justification of the statement is not given), explicit or implicit (as
in C-II S8: a high-level description of a set of steps is givenrather
than explicit proof steps) – but also other content which adds to the
solution indirectly (as in C-II S1: a solution strategy to beadopted is
described or C-II S11: a proof structure to follow – case distinction
– is signalled) or which does not add to the solution at all (C-II S9:
help is requested).

6 References of this form are artifacts of our dialogue display interface. In
the dialogue history, student turns were numbered and labelled “Student 1”,
“Student 2”, etc. while tutor turns were labelled “Tutor 1”,etc.

In order to investigate linguistic diversity of learner proof dis-
course at a level corresponding to the different functionalcontri-
bution types, we designed a typology of learner utterances based
on the corpus data at hand. The present classification buildson
previously proposed dialogue move taxonomies for tutorialdia-
logue [22, 32, 9, 4] and has been adapted specifically for the proof
tutoring domain based on the analysis of our data. The classification,
shown in Table 2, has a shallow hierarchical structure focusing on
Solution-contributingcontent. All utterances which do not contribute
solution proposals are grouped into one category,Other, with an ex-
tra class.Uninterpretablefor utterances whose semantics or prag-
matic intent could not be interpreted; for instance, because they were
cut off mid-utterance.

The distinction between theSolution-contributingclass andOther
is that withsolutionsa learner is adding information to the solution
he is constructing, be it by contributing an explicit or implicit solu-
tion step or steps, changing the meta-level status of the solution (for
instance, stating that a new attempt at a solution will be made) or
by signalling a revision or an evaluation of an already contributed
solution part. TheOther class may comprise utterances which ex-
press learner’s knowledge, but only those explicitly elicited by the
tutor and which do not add to the solution being constructed.Since
in the scope of this paper we are mainly interested in the analysis
of argumentative language of mathematical proofs and so focus on
contributions with solution-relevant content, the classification of ut-
terances which do not contribute solution steps is coarse-grained.7

Note that the present classification can be mapped to previously
proposed classifications of dialogue actions in tutoring. For instance,
the categoryProof contributioncorresponds toContribute domain
content in the classification proposed in [32], toInformation Ex-
change : Assertin [4] andAssertionsin [22], and comprises the cat-
egoriesSolution-stepandSolution-strategyfrom [8]. Following the
general scheme proposed in [9] our class ofProof contributionsfur-
ther coded in theNoveltydimension for steps which contribute new
content (C-II S17 is a counter-example) and in theMotivationdimen-
sion asInternal or External, depending on whether they have been
elicited by the tutor. Utterances in theMotivation : Externalcategory
would be found, among others, in ourAnswercategory.

5 QUANTITATIVE ANALYSIS
OF THE LINGUISTIC FORMS

We begin the quantitative analysis with a high-level overview of the
amount of natural language verbalisation in the learner language by
looking at the distribution of turns and utterances formulated using
mathematical symbols alone, using natural language alone,and using
natural language interleaved with mathematical symbols. Following
this overview, we focus on the latter two categories; that ison utter-
ances formulated usingsomenatural language. We first look at the
distribution of utterance types, as defined in Section 4, in the two
corpora. Then we take a closer look at theProof contributionutter-
ances, in particular at theProof stepcategory in terms of the type
of content that is verbalised. We summarise the most frequently en-
countered linguistic forms – linguisticverbalisation patterns– by
category, and analyse the growth of the diversity of forms with the
increasing corpus size. In all analyses we consider the two corpora
in isolation (C-I and C-II) and also a larger corpus consisting of the
two corpora combined into one data set (C-I∪ C-II).

7 We provide the full utterance classification, including thenon-solution-
related categories, for the sake of completeness.



Table 2. Classification of learner utterances

Category Description Examples

Solution-contributing
Proof contribution

Proof step Contributes a proof step or part of a proof step
“From A ∩ B = ∅ follows: A ⊆ K(B)”

“Justification:A ⊆ (U \ B)”

Proof strategy States a solution strategy to be adopted
“I’m using the Axiom of Extensionality”

“Proof by⊆ and⊇”

Proof structure Signals solution structure “I’m making a case distinction:”

“Forward direction:”

Proof status Signals the status of the (partial) solution
“And so one subset relation is shown.”

“q.e.d.”
Meta-level

Self-evaluation States an evaluation of own step “I’ve made a typo.”

“Correction:”

Restart Signals a new attempt at a proof being started
“new start”

“Once again from the beginning.”

Give up Signals abandoning the solving task
“I would like to know the solution”

“I’m giving up”
Other

Request help Requests assistance
“I need a hint”

“How is R ◦ S defined?” “am I on the right track?”

Answer Provides a non-Yes/No answer to a question
posed

T: What are the possible properties of binary relations?
“symmetry”

T: What does the variablex mean?
〈u〉”x has two meanings”〈/u〉
〈u〉”it occurs in two different sets”〈/u〉

Address
Provides a non-elicited reaction
to a previous contribution

“This answers my question only halfway!”

“The bracket could just as well be in a different place
if you ask me!”

Agree Expresses agreement with a statement “indeed you’re right”

Cognitive state Expresses the state of knowledge or understand-
ing

“i don’t know what i can do with this hint!”

“I know that.”

P/E/A Politeness/Emotion/Attitude
“Sorry!”

“I will exchange you at the shop!”

Session Expresses a meta-level session-related state-
ment

“Actually Exercise E (as you call it) is called Exercise A here!”

“how about postponing Exercise W and starting with A?”

Self talk Expresses an unelicited comment
“The difference between= und∩ is questionable”

“Must have something to do with the difference.”

DM Discourse Marker “Right...”

“Good then.”

OK Simple acknowledgment

Yes/No “yes” or “no” answer



Table 3. Descriptive information on learner proof discourse in terms of
content modality: symbolic (ME), natural language (NL), and natural

language interleaved with symbolic expressions (ME & NL)

C-I C-II C-I ∪ C-II
Unique / Total Unique / Total Unique / Total

Turns 147 / 332 497 / 927 628 / 1259
ME 2 / 153 2 / 274 2 / 427
NL 34 / 51 134 / 162 163 / 213

ME & NL 111 / 128 361 / 491 463 / 619
Utterances1 200 / 443 531 / 1118 702 / 1561

ME 2 / 189 1 / 300 2 / 489
NL 64 / 92 185 / 278 240 / 370

ME & NL 134 / 162 345 / 540 460 / 702
1 Non-empty utterances after removing punctuation (see pre-processing
in Section 3; A single occurrence of an utterance consistingof a question
mark alone (in C-II) is included in the NL category.

Two frequency counts are given in the descriptive statistics ta-
bles throughout the rest of this paper: “Total” denotes the number of
turn/utterance instances (tokens or “vocabulary size”; where by “vo-
cabulary” here we mean linguistic patterns). “Unique” denotes the
number ofdistinct types (unique pattern types). The proportion of
these two measures is known as “type-token ratio”. The two raw fre-
quencies rather than the summarised measure are provided because
the number of tokens is different for each cell in the tables,so the
raw counts are more informative.

Aside from the frequency distributions, we plot graphs of fre-
quency spectra. Spectrum visualisations are typically used with word
frequencies. They show a frequency distribution in terms ofnumber
of types by frequency class, where a frequency class is a set of (sets
of) instances with the same number of occurrences in the data. In
other words, it shows how manydistinct types(y-axis) occur once,
twice, and so on (x-axis), thus revealing the degree of skewedness of
the types distribution; the earlier the tail withy around 1 starts, the
more idiosyncratic types are likely to exist in the data. We use ver-
balisation patterns – pre-processed utterances – as units of analysis.8

5.1 Mathematical symbols vs. natural language

The most prominent surface characteristic of mathematicaldiscourse
is that it is the familiar mixture of symbols and natural language, the
mother tongue of the author or, in case of most of scientific publica-
tions, English, which has become the de facto language of science.
While, in principle, proofs can be presented using the symbolic lan-
guage of mathematics alone – as in formal logic, for instance– this
presentation style is not common in communicating mathematics. In
fact, it has been argued that symbolic notation does not haveto domi-
nate in a proof for it to make a “better” proof [16]. There is, however,
no “prescribed” presentation style other than guidelines,and even on
those authors differ (see [29, 15, 20, 21], to mention just a few).

In the context of learning mathematics, mathematical notation, its
mastery, has been shown to be one of the major obstacles in learning
to do proofs [26]. Interestingly, the presentation style ofthe study-
material – mainly formal vs. mainly natural language, verbose proof
presentation – has an influence on the learners’ use of natural lan-
guage in computer-based tutoring [34]; that is, learners mimic the
linguistic style they are presented with. As the first approximation of
linguistic variety in learner proof discourse, we therefore analyse the

8 R [27] was used to create for the plots and the zipfR package [14] for the
frequency spectra. Only the first 15 frequency classes are shown since in all
cases the frequency of the larger classes oscillated between 0 and 5.

Table 4. Distribution of utterance types

C-I C-II C-I ∪ C-II
Total Total Total

Solution-contributing 187 548 735
Proof contribution 180 539 719

Proof step 171 469 640
Proof strategy 4 30 34
Proof status 5 24 29
Proof structure - 16 16

Meta-level 7 9 16
Self-evaluation 2 5 7
Restart 2 3 5
Give up 3 1 4

Other 64 267 331
Request help 16 154 170
Yes/No 18 24 42
Cognitive state 15 16 31
Politeness/Emotion/Attitude 3 21 24
Discourse marker 1 21 22
Answer 5 15 20
OK 1 6 7
Address 1 5 6
Session - 4 4
Agree 2 1 3
Self talk 2 - 2

Uninterpretable 3 4 7

learners’ contributions in terms of the two types of contentmodali-
ties: natural language and symbolic expressions.

Table 3 shows the distribution of turns and utterances in both cor-
pora with respect to natural language and symbolic content.ME de-
notes turns and utterances consisting of symbolic expressions alone,
NL those consisting of natural language alone (as in C-II S8), and
ME & NL those consisting of natural language interleaved with
mathematical expressions (C-I S1 or C-II S29).

In both corpora the majority of turns and utterances containsome
natural language (turns: 54% NL/ME & NL vs. 46% ME in C-I and
70% vs. 30%, respectively, in C-II; utterances: 57% NL/ME & NL
vs. 43% ME in C-I and 73% and 27%, respectively, in C-II). Only
14 NL/ME & NL turn-level patterns and only 28 utterance-level
patterns occur both in C-I and C-II (turn-level: 640 NL/ME & NL
patterns in C-I and C-II considered in isolation vs. 626 in C-I ∪ C-II;
utterances: 728 in C-I and C-II in isolation vs. 700 in C-I∪ C-II).
There is proportionally more natural language in C-II even though,
as shown in [34], the participants in the formal material condition
were less verbose than those in the verbose material condition.

Overall, 69% of the utterances in C-I∪ C-II contain some linguis-
tic material, among which there are 700 distinct utterances(verbali-
sation patterns). From this point on we focus on a subset of the data:
we look at utterances only and only those which do contain natural
language. We start by looking at the distribution of utterance types.

5.2 Distribution of utterance types

Table 4 shows the distribution of utterance types, as definedin Sec-
tion 4, in both corpora.9 The majority of utterances in both corpora
are solution-contributing, 74% of all utterances in C-I and67% in
C-II, and most of them proof steps. This is not surprising of course.
The second experiment involved more complex proofs requiring, for

9 Only the utterance types with more than five occurrences willbe discussed
here. Utterance types with lower frequency of occurrence appear too sparse
for any conclusions about their wording.
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Figure 2. Frequency spectra: Utterance types (x-axis log-scaled)

instance, considering cases and proving both directions ofa bi-
conditional, which resulted in explicit verbalisations ofthe proving
strategy, the proof structure, and in learners signalling that a complex
proof (or its part; e.g. one direction of a bi-conditional) is completed.

Among the non-solution-contributing utterances, the largest class,
51%, are help requests of different specificity; from general requests
(such as “Hilfe!” (en.Help!) or “Einfaches Beispiel wuerde mir
weiter helfen” (en.A simple example would help me)) to specific
requests of a definition (such as “Wie lautet die Definition der Op-
eration−1?” (en.What’s the definition of−1?) or “Erklaere die Def-
inition R ◦ S in Worten!” (en.Explain the definition ofR ◦ S in
words!)), or enquiries whether propositions hold (such as “Ist(a, z)
in R?” (en.Is (a, z) in R?) or “Elemente von(R◦S)◦T sind Tripel
der Form(x, y, z), oder?” (en.Elements of(R ◦ S) ◦ T are triples
of the form(x, y, z), right?)) The second largest category are closed-
class types, Yes/No and OK, which together make up 15% of all the
non-solution-contributing utterances.

The second largest category of open-ended verbalisations are
meta-cognitive statements on the state of knowledge (or, for the most
part, of thelack of knowledge), 31 occurrences. Statements such
as “Keine Ahnung mehr wie der Nachweis korrekt erbracht wer-
den kann” (en.No idea how the proof can be correctly produced)
or “Verstehe die definition nicht” (en.Don’t understand the defini-
tion), can be interpreted as indirect requests of help. Interestingly,
only one wording appeared more than once, “Dann weiss ich nicht
weiter” (en.So I’m lost).

Aside from the two common variants of expressions of grat-
itude (“Danke”/“Vielen Dank” (en.Thank you/Thank you very
much)) and the four common German variants of apologies (“Tut
mir leid”/“Entschuldigung”/“Verzeihung”/“Sorry”), theremaining
expressions of emotions and attitude (Politeness/Emotion/Attitude
class) were idiosyncratic and unpredictable, and spanned both pos-
itive polarity emotions, for instance, “Das macht Spass mitDir”
(en. It’s fun with you!) and negative polarity (“Wollen Sie mir nun
Mathematik beibringen oder wollen Sie mich pruefen???” (en. Do
you want to teach me math now or do you are you giving me a

test???), “NERV!!” (en. [anger])). Not surprisingly, idiosyncratic
were also the occurrences of the remaining open-ended classes, an-
swers and addresses, whose content is entirely determined be the pre-
ceding context, i.e. the tutor’s contribution which triggered them.

What is interesting is that there were 22 occurrences of dis-
course markers, the kinds typical of spoken language: “na ja” (en. oh
well), “oh”, “hm”. The variety of discourse markers suggests that
computer-mediated dialogue was treated by the subjects much like
natural spoken interaction, even though it was type-written.

Figure 2 shows the frequency spectra of all the utterance types
and of the two major utterance classes. It is clear from the plot that
the distribution of distinct verbalisations is heavily skewed. For all
sets of utterance types, already the number of patterns withat least
between three to five occurrences is less than 10. The tail of patterns
with frequency 1 starts between 5-10 or more occurrences.

Frequency spectra also show that the data is sparse and even
though some utterance types have a high frequency of occurrence
(Table 4) they consist of mainly idiosyncratic linguistic patterns. Of
course, most interesting from the point of view of formalisation are
the core argumentative utterances which build up a proof. Thus, we
now take a closer look at the verbalisations of proof contributions.

5.3 Proof contributions

Since we are interested in the diversity of wording, we first consider
the type of content that proof contributions verbalise. Considering
that theultimategoal of this work is to computationally translate the
natural language verbalisations into a formal language of adeduc-
tion system, aside from the three classes of proof-level descriptions
– proof strategy, proof structure, and proof status (see Table 2) – three
classes of proof steps are distinguished in the analysis that follows.
The sub-categorisation of proof steps takes into account, on the one
hand, the type of content the natural language expresses and, on the
other hand, the type of linguistic knowledge which needs to be en-
coded in order for formalisation to be possible.

The simplest case for translation are steps in which natu-
ral language is used only for logical operators (connectives and
binders/quantifiers), to signal proof step components, andwhere
no discourse context nor domain-specific linguistic information is
needed. By proof step components we mean elements of a deduc-
tion system’s proof language such as the declarative proof script lan-
guage presented in [2]. In order to formalise proof steps of this kind,
the only linguistic knowledge needed is the natural language vocab-
ulary and syntax of logical connectives and of the proof structural
components (proof discourse connectives); that is, only a basic inter-
pretation lexicon. Examples of this class of proof steps include:10

(10) WennA ⊆ K(B), dannA ∩ B = ∅ [C-I S1]

(11) Sei(a, b) ∈ (R ◦ S)−1 [C-II S2]

We will refer to this class of steps asNL logic & proof step com-
ponentswhich stands for “natural language logical connectives and
proof step components”.

The second and third class of proof steps are those which require
context and linguistic domain knowledge for interpretation and for-
malisation: if beyond the type of content described above, only do-
main concepts from the domain(s) to which the proof refers (here: set
theory and binary relations) and discourse-specific references have
to be translated, then the proof step belongs to the second category,

10 The example sentences are worded here as they occur in the corpus. For
the analysis, they have been pre-processed as described in Section 3.
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Figure 3. Frequency spectra: Proof step types (x-axis log-scaled; y-axis
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to which we will refer to asNL domain & context. The verbalised
domain concepts may be single and multi-word domain terms11 but
also informal verbalisations of domain relations, such as the locative
prepositional phrase with “in” for set membership. Examples of the
second class of proof steps include:

(12) inK(B) sind allex, die nicht inB sind [C-I S5]

(13) Nach der Definition von◦ folgt dann(a, b) ist in
S−1 ◦ R−1 [C-I S6]

(14) Nach Aufgabe A gilt(R ∪ S) ◦ T = (R ◦ T )∪
(S ◦T ) [C-II S25]

In C-II S25 the reference “Aufgabe A” needs to be resolved. Note,
however, that the utterance “Es gilt nach Definition ausserdemS−1 ◦
R−1 = (x, y)|∃z(z ∈ M ∧ (x, z) ∈ S−1 ∧ (z, y) ∈ R−1)” (en. By
the definition it moreover holds that . . .) belongs to the first class,
NL logic & proof step components: no domain-specific vocabulary is
used; the word “definition” is in the basic lexicon of mathematics.12

Finally, the third class comprise those steps which are not speci-
fied explicitly, but rather indirectly as high-level meta-descriptions of
a (possibly complex) transformation which needs to be performed in
order to reconstruct the intended step. An example of such ascom-
plex proof step is C-II S8. Other examples include:

11 See the paragraph on normalisation of domain terms and domain-specific
references in Section 3.3

12 The verbalisation-oriented proof step classification proposed in [31], while
similar to ours and designed with a similar motivation, is imprecise. First,
it is not clear whether the classsimple connectionswould accommodate
utterances with adverbs or adverbial phrases, such as “Moreover, as pre-
viously shown, it follows that . . . ” Second, and more importantly, the dis-
tinction betweenweakly verbalisedand strongly verbalisedformulas is
unclear based on the definitions given.Weakly verbalisedformulas are de-
fined as those “where some relations or quantifiers are partlyverbalised”,
while strongly verbalisedformulas as those “where all relations and quan-
tifiers are fully verbalised”. Based on these definitions it is not clear why
the example “a is the limit of (an)n∈N ”, given in the paper, should be
classified asweakly verbalised, whereas “For allǫ holds: there exists a
n0(ǫ) ∈ N with . . . ” asstrongly verbalised; clearly, the set membership
relation inn0(ǫ) ∈ N is not verbalised.

Table 5. Descriptive information on proof contributions

C-I C-II C-I ∪ C-II
Unique / Total Unique / Total Unique / Total

Proof step 138/ 171 287 / 469 407 / 640
NL logic & proof step components 54 / 80 136 / 286 175 / 366
NL domain & context 78 / 85 140 / 171 216 / 256
NL meta-level description 6 / 6 11 / 12 16 / 18

Proof strategy 4 / 4 25 / 30 29 / 34
Proof structure - / - 7 / 16 7 / 16
Proof status 1 / 5 7 / 24 7 / 29

(15) Analog geht der Fall, wenn(a, z) ∈ S.
(en.The case for(a, z) ∈ S is analogous)

(16) de morgan regel 2 auf beide komplemente angewendet
(en.de morgan rule 2 applied to both complements)

(17) (S ◦ T ) ist genauso definiert
(en.(S ◦ T ) is defined the same way).

Complex proof steps of this kind will be referred to asNL meta-
level description.

Table 5 shows descriptive statistics on proof contributions with
proof steps sub-classified as described above. Not surprisingly, the
wording of two types of proof contributions which refer to the proof-
level concepts – proof strategy and proof structure – is diverse. Word-
ing of proof status information is repetitive; indeed, mostoften only
the end of the proof is signalled explicitly and most often using
the abbreviation “q.e.d.” Now, also not surprisingly, within the class
of proof steps, the more complex the content, the more variedthe
wording. Meta-level descriptions of proofs are almost entirely id-
iosyncratic. Only two utterance patterns occurred more than once:
“MATHEXPR ist analog definiert” (en. MATHEXPRis defined
analogously) and “das gleiche gilt fuer MATHEXPR” (en.The same
holds forMATHEXPR). The wording of proof steps in theNL do-
main & contextcategory is also diverse: 92% of instances are dis-
tinct in C-I, 82% in C-II, and 84% overall. Most repetitive patterns
are found in theNL logic & proof step componentsclass: 67% of all
utterance instances in this category are distinct in C-I, only 47% in
C-II, and 48% in both corpora combined. Overall, 63% of proofsteps
(from the three categories) are distinct.

Figure 3 shows the frequency spectra of the three proof step cate-
gories in C-I∪ C-II. Again, the distribution of verbalisation patterns
is heavily skewed. In the largest category,NL domain & context, 210
out of the 216 unique patterns occur only once or twice; that is 97%.
In theNL logic & proof step componentscategory, around 150 out of
the 175 unique patterns, 73%, occur once or twice. However, within
this class there are 8 patterns with at least five instances ofoccur-
rence. Table 6 shows the top-10 most frequent linguistic patterns in
the three classes of proof steps from the combined corpus, C-I ∪ C-II,
with their frequency of occurrence.

5.4 Growth of the diversity of forms

Finally, we are interested in how the diversity of forms evolves with
the number of conducted dialogues. Specifically, we would like to
know how many dialogues are needed to have observed most of the
verbalisation patterns. Figure 4 shows a plot of a variant ofthe type-
token (vocabulary growth) curve [36]. On the x-axis is the number
of dialogues seen. Rather than the raw type count, the y-axisshows
the proportion of observed pattern types out of all pattern types in
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Table 6. Top-10 most frequent utterance patterns expressing proof steps

Linguistic pattern Frequency

Proof step
NL logic & proof step components

sei MATHEXPR 54
es gilt MATHEXPR 13
wenn MATHEXPR dann MATHEXPR 12
also MATHEXPR 12
dann ist MATHEXPR 11
also ist MATHEXPR 9
MATHEXPR und MATHEXPR 8
MATHEXPR ist dann MATHEXPR 7
daraus folgt MATHEXPR 7
daraus folgt dass MATHEXPR 7

NL domain & context
nach REFERENCE MATHEXPR 7
DOMAINTERM 7
nach REFERENCE ist MATHEXPR 4
MATHEXPR nach REFERENCE 3
DOMAINTERM von MATHEXPR ist DOMAINTERM

MATHEXPR 3
aus REFERENCE folgt MATHEXPR 3
wegen der formel fuer DOMAINTERM folgt MATHEXPR 2
oder MATHEXPR wegen DOMAINTERM von MATHEXPR 2
nach REFERENCE gilt MATHEXPR 2
nach DOMAINTERM gibt es ein MATHEXPR mit MATHEXPR 2

NL meta-level description
MATHEXPR ist analog definiert 2
das gleiche gilt fuer MATHEXPR 2
gleiches gilt mit MATHEXPR 1
DOMAINTERM auf beide DOMAINTERM angewendet 1
der fall MATHEXPR verlaeuft analog 1
der beweis von MATHEXPR ist analog zum beweis

von MATHEXPR 1
beweis geht genauso wie oben da in REFERENCE bis

REFERENCE nur DOMAINTERM umformungen stattfinden 1
analog geht der fall wenn MATHEXPR 1
andersrum 1
die zweite DOMAINTERM ergibt sich aus der umkehrung

aller bisherigen beweisschritte 1

the given corpus.13 The order of dialogues in C-I and C-II has been
randomised. For the C-I∪ C-II plot, the corpora were combined and
a random sequence drawn from the combined set.

What can be seen from the graphs is that the pattern vocabulary
grows linearly (given the random sample drawn). The tendency is
similar in both corpora: half of the patterns have been seen at about
40% of the data sets and 80% of the patterns at about 77% into the
data set in C-I (ca. 17 dialogues) and 70% in C-II (ca. 26 dialogues).
In the combined corpus, however, half of the patterns have been seen
already about 32% into the data set. 80% of the patterns have been
seen about 70% into the data set (ca. 41 dialogues).

6 DISCUSSION

First, it is clear from the results that the language of learner dis-
course in proofs is not as repetitive as one might expect. Learn-
ers use complex natural language utterances not only duringmeta-
communication with the tutor, but also when contributing proof
steps. 57% of all utterances in C-I and 73% in C-II contained some
natural language. The fact that natural language was more often used
in the C-II corpus may be explained by the fact that the binaryrela-
tions proofs were more complex than the set theory proofs. However,
set theory is very naturally expressed in natural language,so the rea-
son why this was the case needs further investigation.

Second, the wording of proof steps is surprisingly diverse and the
language used in the two corpora is different. The fact that there were
only 28 utterance verbalisations which occurred in both data sets is
surprising.14 This low number of common patterns is reflected in the
type-token plot (Figure 4) which exhibits a steady increasewith only
one area of slower growth in the combined corpus, about 20-25%
into the randomly-ordered data set.

The difference in the linguistic diversity of the proof language (the
proof contributions class) in the two corpora can be also seen in the
different distributions of distinct linguistic patterns (Table 5). Among
the logic & proof step componentsclass, 67% of the verbalisations
were distinct in C-I and 47% in C-II. In thedomain & contextclass,
92% of all the verbalisations were distinct in C-I and 82% in C-II.
That is, the language in C-II appears more repetitive. In both cor-
pora, however, the language in the latter class of proof steps is more
heterogeneous than in the former. The frequency spectra andthe pat-
tern growth curves show further the degree to which the language is
indeed diverse. In thelogic & proof step componentsclass, 81% of
the distinct types were single-occurrence utterances (81%in C-I and
72% in C-II). In thedomain & contextclass, 90% of the types were
single-occurrence (96% in C-I and 85% in C-II).

Not surprisingly, the majority of the meta-level communication
are the learners’ requests for assistance: requests for hints, defini-
tions, explanations, etc. As these are not the core argumentative ut-
terance types, we did not present a detailed analysis here, however,
to roughly illustrate the diversity of wording it is enough to mention
that out of the 170 help requests, 149 (88%) were distinct verbali-
sations. 136 of these were single-occurrence patterns. A further sub-
classification of help requests might reveal more homogeneity in the
wording within the subcategories.

The relatively large number of discourse markers, typical of spo-
ken interaction, suggests that participants had an informal approach

13 198, NL + ME & NL, utterance patterns in C-I, 530 in C-II, and 700 in
C-I ∪ C-II; see Table 3.

14 8 were from the non-solution contributing class and 20 were proof step
verbalisations, the majority from thelogic & proof step componentsclass.



to dialogue style and treated it much like a chat, adapting spoken lan-
guage they would have otherwise used in a natural setting to the ex-
periments’ type-written modality; this is a known phenomenon [18].
The diversity of verbalisations may be partly due to this.

7 CONCLUSIONS AND FURTHER WORK

We have shown that even this seemingly linguistically predictable
argumentative domain of mathematical proofs is characterised by a
large variety of linguistic patterns of expression and by a large num-
ber of idiosyncratic verbalisations and that the meta-communicative
part of discourse which does not directly contribute to the solution
has an conversational character, suggesting learners’ informal atti-
tude towards the computer-based dialogues and high expectations on
the input interpretation resources. This calls for a combination of
shallow and deep semantic processing methods for the discourse in
question: shallow pattern-based approaches for contributions which
do not add to the proof and deep lexicalised grammars for the proof-
relevant content, in order to optimise coverage. At the timeof writing
a parsing grammar for German we have been developing is capa-
ble of analysing all the linguistic proof-contribution structures which
occurred more than twice in the data. Future work will proceed in
two directions: (i) we will continue to improve the grammar cover-
age and (ii) we have started pre-processing proofs from a corpus of
open-access scientific publications (in English) in order to perform
an analogous analysis of language variety in expert proof discourse.
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