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Abstract

In many fields of automated information processing
it becomes crucial to consider together imprecise,
uncertain or inconsistent information. Modalities
are terms which indicate the level of certainty with
which a claim can be made. Argumentation the-
ory is a suitable framework for practical and uncer-
tain reasoning, where arguments could support con-
clusions. We present a modality-based argumenta-
tion approach, where the modalities categorize the
encoded knowledge and allow building arguments
which express levels of certainty. This approach is
based on the concept of possibilistic stable models.

1 Introduction
Argumentation has proved to be a useful tool for represent-
ing and dealing with domains in which rational agents are
not able to decide by themselves about something, and may
encounter other agents with different preference values. The
ability to reason about what is thebestor mostappropriate
course of action to take in a given situation is an essential
activity for a rational agent. A rational agent may also use
argumentation techniques to perform its individual reasoning
as it needs to make rational decisions under complex prefer-
ences policies, or to reason about its commitments, its goals,
etc.

Since Aristotle’s Metaphysics, modalities have been an ob-
ject of study for logicians especially in relation with the con-
struction of arguments. Modalities are terms which indicate
the level ofcertaintywith which a claim can be made. Ac-
cording to Merriam-Webster Dictionary amodalityis:

“The classification of logical propositions accord-
ing to their asserting or denying the possibility, im-
possibility, contingency, or necessity of their con-
tent".

Research on rational agents has raised further questions
about modalities in the context of argumentation, and the
roles that arguments play in the pursuit of an agent’s goals
and plans.

In the medical domain, there are different sources of exam-
ples of argumentation where the evidence/possibility plays a

central role in order to make decisions[Fox and Modgil, Cur-
rently in press]. The main objective is to discover the accept-
able set of arguments that support a given claim in a given
context. This is a purposeful process where thevalidity of
arguments and theevidenceof premises are both approached.
For instance, in the process of organ transplanting, there is
small amount of information availablew.r.t. the viability cri-
teria which are applied whether a particular organ is viable to
be transplanted. However, there is a high-level of detail and
quality informationw.r.t. each medical case. Since medical
decision-making is susceptible to the evidence of the informa-
tion, it is not always natural to quantify the medical knowl-
edge in a numerical way. For instance in[Szolovits, 1982],
it is pointed out that the chief disadvantages of the decision
theory approach are the difficulties of obtaining reasonable
estimates of probabilities and utilities for a particular anal-
ysis. Although techniques such as sensitivity analysis help
greatly to indicate which potential inaccuracies are unimpor-
tant, the lack of adequate data often forces artificial simplifi-
cations of the problem and lowers confidence in the outcome
of the analysis.

To build a unifying framework, argumentation and evi-
dence have been explored by different points of view[Bonet
and Geffner, 1996; Krauseet al., 1995; Amgoud and Prade,
2004]. However, most of the proposals suggest lack of a
versatile specification language for encoding the available
knowledge and the evidence involved.

The use of logic specification languages is a successful
approach for encoding knowledge. In the last two decades,
one of the most successful logic programming approach has
been Answer Set Programming (ASP). ASP is the realiza-
tion of much theoretical work on Non-monotonic Reason-
ing and Artificial Intelligence applications. It represents
a new paradigm for logic programming that allows, using
the concept ofnegation as failure, to handle problems with
default knowledge and produce non-monotonic reasoning.
The efficiency of the answer set solvers have allowed to
increase the list of ASP’s practical applicationse.g., plan-
ning, logical agents and Artificial Intelligence[DLV, 1996;
SMODELS, 1995].

In [Nicolaset al., 2005], an extension of ASP was proposed
which permits to take into account a certainty level, expressed
in terms of necessity measure, on each rule of a possibilistic
normal logic program. The semantics of a possibilistic nor-



mal logic program is based onpossibilistic stable models.
By considering the ASP’s language and a variation of the

possibilistic stable models1, we present a modality based ar-
gumentation approach where the knowledge is quantified by
modalities. We understand a modality as a category of lin-
guistic meaning having to do with the expression of possi-
bility and necessity like:possible, probable, plausible, sup-
ported andopen2. Thus, the concept of modality argument
is proposed where each modality argument has a quantifier
that represents confidence in its conclusion. Since managing
inconsistent information is a natural feature of our approach,
the argumentation-based inference consists of two steps:con-
structing modality argumentsandmanaging conflict between
modality arguments.

Our novel modality-based argumentation approach repre-
sents one of the mostexpressive argumentation approachde-
fined until now which permits to express levels of uncertainty
based on modalities. Since, humans currently use arguments
for explaining choices which are already made, or for evalu-
ating potential choices, this approach contributes to the study
of defining fundamental mechanisms for modeling decision
making process based on arguments.

The main contributions of this paper are: 1.- The general-
ization of the possibilistic stable models in order to manage
non-numerical uncertain degrees about the real world and to
use strong negation in the specification language. 2.- The def-
inition of a novel modality-based argumentation approach for
building arguments by considering possibilistic stable mod-
els. 3.- The definition of a suitable approach for managing
conflicts between modality arguments which offers suitable
features for handling inconsistency information. To the best
of our knowledge, our approach is the first work which con-
siders two kinds of negations in the specification language in
order to build arguments.

The rest of the paper is structured as follows: In §2, we put
forward the syntax to be used. In §3, we introduce our specifi-
cation language. In §4, we define a variation of the possibilis-
tic stable models. In §5, we introduce the concept of a modal-
ity argument and define how to manage conflicts between
modality arguments. In §7, we present a short overview of
the related works to our approach, our future work and we
outline our conclusions.

2 Background
A signatureL is a finite set of elements that we call atoms.
A literal is an atom,a, or the negation of an atom¬a. The
complementof a literal is defined as̃a = ¬a and ¬̃a = a.
Given a set of literals{l1, . . . , ln}, we writenot {l1, . . . , ln}
in order to denote{not l1, . . . , not ln}. An extended normal
clause,C, is denoted by

l ← l1, . . . , lj , not lj+1, . . . , not ln

1Namely, we consider a complete lattice in order to define pos-
sibilistic stable models and we extend the language by using strong
negation. It is worth mentioning that according to Section 4.3 of
[Duboiset al., 1994], basically for the Possibilictic Logic’s infer-
ence what is needed is a complete lattice.

2In [Fintel, 2006] a study of the kinds of modal meaning can be
found.

wherel is a literal andn ≥ 0, eachli is a literal. Whenn =
0 the extended normal clause is an abbreviation ofl ← >,
where> and⊥ are the ever true and ever false propositions
respectively. An extended normal program is a finite set of
extended normal clauses.

Sometimes, we denote a clauseC by l ← B+, not B−,
where B+ contains all the positive body literals andB−
contains all the negative body literals.C+ andC− denote
l ← B+ andl ← not B− respectively. We also usebody(C)
to denoteB+∪not B−. WhenB− = ∅, the clauseC is called
extended definite clause. An extended definite program is a
finite set of extended definite clauses.

We denote byLP the extended signature ofP , i.e. the set
of literals that occurs in P. We point out that we understand
the negation¬ as the so calledclassical negation(or strong
negation) by the ASP’s community and the negationnot as
thenegation as failure[Baral, 2003].

In the following sections, we assume familiarity with ba-
sic concepts in lattice theory. A good introductory treatment
of the relevant concepts can be found in the text[Davey and
Priestly, 2002]. Given a complete lattice(Q,≤) andS ⊆ Q,
LUB(S) denotes the least upper bound ofS, GLB(S) de-
notes the greatest lower bound ofS, TOPQ denotes the top
of Q, andBOTQ denotes the bottom ofQ.

3 Modality specifications

First of all, we present the syntax of our specification lan-
guage. The basic concept of our language is amodality
clause.

Definition 1 (Modality clause) Let (Q,≤) be a complete
lattice. A modality clause is denoted by:Modality : C,
whereModality ∈ Q andC is an extended normal clause.
WhenC is an extended definite clause, the modality clause is
called definite modality clause.

Notice that by using a complete latticeQ, a modality clause
categorizes the sentence which is expressed in the extended
normal clauseC. This means that a modality clause locates a
sentence in the domain ofQ.

We understand amodalityas acategoryof certain meaning
having to do with the expression of possibility. Therefore, we
are categorizing a set of possibilities by a complete lattice.
For instance, ifS is the set of labels{Certain, Confirmed,
Probable, Plausible, Supported, Open} such that the labels
hold the relations expressed in Figure 1, thenS could be re-
garded as a set of modalities where each label is a possible
category of beliefs.

Formally, we understand a modality logic program P as
a tuple of the form〈(Q,≤),Modality_Clauses〉, where
(Q,≤) is a complete lattice andModality_Clauses is
a set of modality clauses such that:∀(q : C) ∈
Modality_Clauses, q ∈ Q.

For instance, one possible modality logic program (in the
context of medical domain) with its intuitive meaning could
be described as follows (in this program, we assume the com-
plete lattice of Figure 1):



Figure 1: A lattice where the following relations hold:
Open ¹ Supported, Supported ¹ Plausible,
Supported ¹ Probable, Probable ¹ Confirmed,
Plausible ¹ Confirmed, andConfirmed ¹ Certain.

It is confirmed that the donor has been infected by streptococcus
viridans.
Confirmed: dsve.

It is plausible that if the donor has been infected by streptococcus
viridans, then the recipient could be infected too.
Plausible: risv← dsve.

To define the semantics of the modality programs, we shall
require to project part of the modality clauses as follows: If
r := (Modality : C) is a modality clause, thenr∗ = C
andrγ = Modality. It is easy to see that for any modality
programP , there is a normal/definite logic program∆(P ) :=
{r∗|r ∈ P}. In the case that∀c ∈ ∆(P ), c is an extended
definite clause, thenP is called definite modality program.

4 Modality program’s semantics
In this section, the semantics of the modality programs is pre-
sented. This semantics is based on a variation of the possi-
bilistic stable semantics presented in[Nicolaset al., 2005].
The main differences of our approachw.r.t. Nicolas’ et al.
approach[Nicolaset al., 2005] are : 1.- We consider a com-
plete lattice instead of only the interval[0, 1] for representing
the degree of uncertainty about the real world. Notice that,
since[0, 1] is a complete lattice, our approach is a generaliza-
tion of Nicolas’ approach. 2.- Also we extend the language
of the possibilistic stable semantics presented in[Nicolaset
al., 2005] by introducing strong negation in the framework of
possibilistic answer set programming.

First of all, we start defining some relevant concepts. A
possibilistic literal is a pairl = (a, q) ∈ L × Q, whereL
is a finite set of literals and(Q,≤) is a complete lattice. We
apply the projections∗ andγ to the possibilistic literals as
follows: l∗ = a and lγ = q. Given a set of possibilistic
literals S, we define the generalization of∗ andγ overS as
follows: S∗ = {l∗|l ∈ S} andSγ = {lγ |l ∈ S}. Three basic
operations between sets of possibilistic literals are formalized
as follows:

Definition 2 Let L be a finite set of literals and (Q,≤) be a

finite complete lattice. ConsiderA = 2L×Q the finite set of
all the possibilistic literal sets induced byL andQ. ∀A, B ∈
A, we define.

A uB = {(x, GLB{q1, q2})|(x, q1) ∈ A ∧ (x, q2) ∈ B}
A tB = {(x, q)|(x, q) ∈ A and x /∈ B∗} ∪

{(x, q)|x /∈ A∗ and (x, q) ∈ B} ∪
{(x, LUB{q1, q2})|(x, q1) ∈ A and (x, q2) ∈ B}.

A v B ⇐⇒ A∗ ⊆ B∗, and∀(x, q1) ∈ A ∧ (x, q2) ∈ B
thenq1 ≤ q2.

The following proposition is straightforward.

Proposition 1 〈A,v〉 is a complete lattice.

The semantics of the modality programs is based on its
possibilistic stable models. In the case of definite modal-
ity programs, the semantics is given by the fix-point of the
operatorΠT . The operatorΠT is based on the evaluation
App(P, L, x) which is defined as follows:

Definition 3 Let r = (α : l ← l1, . . . , lj) be an extended
definite modality clause,(Q,≤) be a complete lattice such
thatα ∈ Q and L be a set of possibilistic literals.

• r is α-applicable inL if body(r∗) = ∅
• r is β-applicable inL if β = GLB{α, α1, . . . , αj} and
{(l1, α1), . . . , (lj , αj)} ⊆ L,

• r is BOTQ-applicable otherwise.

Given an extended definite modality program P and a literal
x, App(P, L, x) = {r ∈ P |head(r∗) = x, r is v-applicable
in L }.

Basically,App(P,L, x) finds the modality clauses which
define the modality of the literalx w.r.t. L. Now, the seman-
tics of any definite modality program is defined as follows:

Definition 4 Let P = 〈(Q,≤), Modality_Clauses〉 be an
extended definite modality program and L be a set of possi-
bilistic literals. The operatorΠTP (L) =

{(x, q)|x ∈ head(∆(P )), App(P, L, x) 6= ∅,
q = LUBr∈App(P,L,x){v|r is v − applicable in L}}

then the iterated operatorΠT k
P is defined byΠT 0

P = ∅ and
ΠTn+1

P = ΠTP (ΠTn
P ), ∀n ≥ 0.

The operatorΠT behaves exactly as in[Nicolas et al.,
2005]. If one conclusion is obtained by different rules, its
modality is equal to the greatest certainty value which is ob-
tained by LUB. The following proposition guarantees that the
operatorΠT always has a fix-point.

Proposition 2 Let P be an extended definite modality pro-
gram. ThenΠTP has a least fix-pointtn≥0ΠTn

P (∅) that we
called the set of possibilistic consequences ofP and we de-
note byΠCn(P ).

We will define the reduction of a modality programw.r.t. a
set of atoms in order to define the possibilistic stable model
semantics.

Definition 5 Let P be a modality program and A be a set
of literals. The possibilistic reduction of P w.r.t. A is the
definite modality programPA = {((r∗)+, rγ)|r ∈ P and
body−(r∗) ∩A = ∅}



Intuitively, PA is obtained fromP by removing all the
modality clauses whose bodies have negated literals that also
are inA and considering only the positive part of the clauses’
bodies of the rest of the programP . Remember, that if C is
the clausel ← B+, not B−, thenC+ denotesl ← B+. By
considering the reductionPA, the semantics of any modality
program is defined as follows:

Definition 6 Let P be a modality program, and S be a set of
possibilistic literals. S is a possibilistic stable model of P if
and only ifS = ΠCn(P (S∗)).

In order to illustrate the definitions, let us consider the fol-
lowing example.

Example 1 Let us consider again the lattice presented in
Figure 1, and the following proposition atoms:a = ‘donor
is HIV+’; b = ‘the organ is viable for transplanting’; andc
= ‘the organ has correct functions and correct structure’. Let
P1 be the following single modality logic program:

It is probable that donor is HIV+

Probable: a.

It is supported that if donor is HIV+ and there is not evidence
that the organ has correct functions and correct structure, then
the organ is not viable for transplanting.
Supported: ¬b ← a, not c.

andS = {(a, Probable), (¬b, Supported)}. It is easy to see

thatP (S∗)
1 is:

Probable: a. Supported: ¬b ← a

Then, ΠCn(P (S∗)
1 ) = {(a, Probable), (¬b, Supported)}.

Therefore,S = ΠCn(P (S∗)
1 ). This means thatS is a pos-

sibilistic stable model ofP1.

5 Argumentation based inference
The argumentation-based inference procedure consists of two
steps:constructing modality argumentsandmanaging con-
flict between modality arguments. Thus, we shall start by
defining how to build arguments from a modality program.

5.1 Building arguments
A modality argument is based on possibilistic stable modes
and is defined as follows:

Definition 7 (Modality argument) Let P = 〈(Q,≤
),Modality_Clauses〉 be a modality logic program.
An argument Arg w.r.t. P is a tuple of the form
Arg = 〈Claim, Support, q〉, such that there is a pos-
sibilistic stable modelM of P , (Claim, q) ∈ M and the
following conditions hold:

1. Support ⊆ P ;

2. (Claim, q) ∈ ΠCn(Support(M
∗)); and

3. Support is minimal w.r.t. set inclusion.

ARG gathers all the modality arguments which can be con-
structed fromP .

Notice that by definition of possibilistic stable model,
Claim is a literal andq ∈ Q. q is consider amodality qualifier
which has the objective of quantifying the level ofcertaintyof
the argument.Support is the minimal subset ofP such that
applying the possibilistic reduction of Pw.r.t. M, one infers
(Claim, q).

In order to illustrate the definition, let us consider the fol-
lowing example.

Example 2 Let P be the modality programP1 from Example
1 plus the following modality clause:

It is confirmed that if an organ has explicitly bad functions
and bad structure then the organ is not viable for
transplanting
Confirmed: ¬b ← ¬c.

ThenP is:
Probable: a.
Supported: ¬b ← a, not c.
Confirmed: ¬b ← ¬c.

We can see thatM = {(a, Probable), (¬b, Supported)}
is a possibilistic stable model of P. Let us build a modal-
ity argument in order to support the conclusion that the or-
gan is not viable for transplanting(¬b, Supported). Two
possible sets of modality clauses are:S1 = {(Probable :
a), (Confirmed : ¬b ← ¬c)} and S2 = {(Probable :
a), (Supported : ¬b ← a, not c)}. By applying the pos-
sibilistic reductionS1(M∗) and the fix pointΠCn(S1(M∗)),
it is not possible to infer(¬b, Supported). Now, by ap-
plying the possibilistic reductionS2(M∗) and the fix point
ΠCn(S2(M∗)), one can see that(¬b, Supported) is in-
ferred from S2. Then, a modality argument which sup-
ports ¬b is: 〈¬b, {(Probable : a), (Supported : ¬b ←
a, not c)}, Supported〉.
5.2 Managing conflict between modality

arguments
In the case that a rational agent’s knowledge base is in-
consistent, there is a possibilistic stable modelM such that
{(a, q1), (¬a, q2)} ⊆ M , then one can construct two modal-
ity arguments of the form:Arg1 = 〈a, Support1, q1〉 and
Arg2 = 〈¬a, Support2, q2〉. This means that these argu-
ments attack each other, then there is a conflict between them.
The conflicts between modality arguments are formalized by
the following definitions.

Definition 8 Let Arg1, Arg2 ∈ ARG such thatArg1 =
〈Claim1, Support1, q1〉 andArg2 = 〈Claim2, Support2,

q2〉. Arg1 attacksArg2, if Claim1 = l andClaim2 = l̃.

Definition 9 Let Arg1, Arg2 ∈ ARG. Arg1 = 〈Claim1,
Support1, q1〉 undercutsArg2 = 〈Claim2, Support2, q2〉 if
and only if∃(q : l ← B+, not B−) ∈ Support2 such that
Claim1 ∈ B−.

Notice that, the concept of undercut is just over literals
negated by negation as failure, this means that ifArg1 under-
cutsArg2, thenArg1 is attackingArg2’s assumptions. Two
arguments are compared by considering their certainty levels
as follows:



Definition 10 Let Arg1, Arg2 ∈ ARG such thatArg1 =
〈Claim1, Support1, q1〉 andArg2 = 〈Claim2, Support2,
q2〉. Arg1 is preferred toArg2 if and only ifq1 ≥ q2.

Once is identified a conflict between arguments, it is im-
portant to identify which argument wins. Then, the concept
of defeatis defined as follows:

Definition 11 Let Arg1, Arg2 ∈ ARG such thatArg1 =
〈Claim1, Support1, q1〉 andArg2 = 〈Claim2, Support2,
q2〉. Arg1 defeatsArg2, if Arg1 attacks/undercutsArg2 and
it is not the case thatArg2 is preferred toArg1.

Notice that, ifArg1 defeatsArg2, thenArg1’s claim has
a support with more evidence/certainty thatArg2. In order
to illustrate those definitions, let us consider the following
example.

Example 3 Let S be an ordered set such thatS =
{certain, likely, maybe, unlikely, false} and the follow-
ing relations hold:false ¹ unlikely, unlikely ¹ maybe,
maybe ¹ likely, likely ¹ certain. Also, let us consider the
following predicates with their respective intended meanings:
elec(X,O): The recipientX is eligible for transplanting or-
ganO; compatible(X,O,L): The recipientX is histocompat-
ible with organO in a levelL; urgency(X,E): The recipient
X has an urgencyE in order to be transplanted3; tempera-
ture(X,T) : The recipientX has a temperatureT.

Now, let us suppose that there are two possible recipients
(r1 andr2) and we want to assign a heart. Then, let us con-
sider the following grounded modality program P:

It is true that if the heart is assigned tor2, thenr1 will not be
eligible for transplanting and vice versa.
Certain: elec(r1, heart) ← ¬elec(r2, heart).
Certain: elec(r2, heart) ← ¬elec(r1, heart).

It is possible that if the receptorr1 has a high histocompatibility
with the heart, thenr1 will be eligible for transplanting.
Maybe: elec(r1, heart) ← compatible(r1, heart, high).

It is true thatr1 has a high histocompatibility with the heart.
Certain: compatible(r1, heart, high).

It is very likely that if the receptorr1 is in 0-urgency, thenr1

will be eligible for transplanting.
Likely: elec(r1, heart) ← urgency(r1, 0-urgency)

It is very unlikely thatr1 will be in 0-urgency.
Unlikely: urgency(r1, 0-urgency).

It is likely that if r1 has high temperature, thenr1 will not be
eligible for transplanting.
Likely: ¬elec(r1, heart) ← temperature(r1, high).

(It is true that the recipientr1 has high temperature)
Certain: temperature(r1, high).

By considering the programP , we want to know who is eligi-
ble for transplanting ( recipientr1 or recipientr2). First, we
can see that the only P’s possibilistic stable model is:

3We will suppose that 0-urgency is the highest urgency-level.
This means that recipient’s life is in risk.

M = {(compatible(r1, heart, high), Certain),
(urgency(r1, 0-urgency), Unlikely),
(temperature(r1, high), Certain),
(elec(r2, heart), likely), (elec(r1, heart),maybe),
(¬elec(r1, heart), likely)}.
Notice that fromM , we can built a modality argumentArg1

which suggests that it is expected thatr2 will be eligible for
transplanting.

Arg1 = 〈elec(r2, heart), {(Certain : temperature(r1, high).),
(Likely : ¬elec(r1, heart) ← temperature(r1, high).),
(Certain : elec(r2, heart) ← ¬elec(r1, heart))}, likely〉

However, it is possible to build a modality argumentArg2

which suggests that the recipientr1 can be eligible for trans-
planting because he has a high histocompatibility with the
organ.

Arg2 = 〈elec(r1, heart), {(Certain : compatible(r1, heart,
high).), (Maybe : elec(r1, heart) ← compatible(r1, heart,
high).)}, maybe〉

But, there is another argumentArg3 which is stronger than
Arg2 and it suggests thatr1 must not be selected for trans-
planting because he has high temperature(fever).

Arg3 = 〈¬elec(r1, heart), {(Certain : temperature(r1, high).),
(Likely : ¬elec(r1, heart) ← temperature(r1, high).)}, likely〉

This means, thatArg3 defeatsArg2. Therefore, the best re-
cipient for transplanting is the recipientr2.

Formally, we extend Dung’s approach[Dung, 1995] in or-
der to solve the conflicts of a set of modality arguments. We
will define the concept of modality argumentation framework
as follows:

Definition 12 (Modality Argumentation framework)
A modality argumentation framework AF is the tuple
AF = 〈ARG, Attacks, Undercuts, preferred_to〉, where
Attacks contains the relations of attack between arguments,
Undercuts contains the relations of undercut between argu-
ments, andpreferred_to contains the preferred relations
between arguments.

In order to illustrate the definition, let us consider only
the arguments of Example 3. ThenAFExample3 is the tuple
〈{Arg1, Arg2, Arg3}, {(Arg2, Arg3), (Arg3, Arg2)}, {} ,
preferred_to(Arg3, Arg2)〉. Now, we define the notion of
acceptable argumentw.r.t. a set of modality arguments.

Definition 13 Let AF =
〈ARG, Attacks, Undercut, preferred_to〉 be a modality
argumentation framework andS ⊆ ARG. A modality
argumentA ∈ ARG is acceptable w.r.t. S (acceptable(A,S)),
if (∀X)((X ∈ ARG ∧ (defeat(X, A))) → (∃Y )(Y ∈
S ∧ defeat(Y, X))).

For instance, let us considerAFExample3. If S = {Arg3},
thenArg3 is acceptablew.r.t. S because the only argument
which attacksArg3 is Arg2, butArg3 defeatsArg2. In order
to define the semantics of a modality argumentation frame-
work we also generalize the Dung’s definitions ofconflict free
setandadmissible set.



Definition 14 Let AF =
〈ARG, Attacks, Undercut, preferred_to〉 be a modality
argumentation framework andS ⊆ ARG. S is a conflict-
free if (∀X)(∀Y )((X ∈ S ∧ Y ∈ S) → ((X, Y ) /∈
Attacks ∧ (X, Y ) /∈ Undercuts).

For example, ifS = {Arg2, Arg3}, then S is not a
conflict-free set becauseArg2 andArg3 attack each other.

Definition 15 A conflict-free set of arguments S is admissible
if (∀X)(X ∈ S → acceptable(X, S)).

If we considerS = {Arg1, Arg2}, thenS is an admissi-
ble set. Finally, we shall present how to get the acceptable
arguments from a modality argumentation framework.

Definition 16 Let AF =
〈ARG, Attacks, Undercut, preferred_to〉 be a modality
argumentation framework andS ⊆ ARG. S is a modality
preferred extension if and only if it is a maximal (w.r.t. set
inclusion) admissible set ofAF .

For instance, let us consider againAFExample3, we can
see that it has four admissible set:S1 = {}, S2 = {Arg1},
S3 = {Arg2}, andS4 = {Arg1, Arg2}. The maximal ad-
missible setw.r.t. set inclusion isS4, thereforeS4 is a modal-
ity preferred extension ofAFExample3.

In domains of high-risk, as medical domain, it is important
to infer sound information. The modality preferred semantics
implies consistent information. This property is formalized
with the following theorem:

Theorem 1 (Consistency Information) Let AF =
〈ARG, Attacks, Undercut, preferred_to〉 be a modality
argumentation framework andS ⊆ ARG. If S is a modality
preferred extension, then the following condition holds:

• If Cs = {Claim|〈Claim, Support, q〉 ∈ S}, thenCs
is a consistent set of literals.

6 Discussion
Even thought humans currently use arguments for explain-
ing choices which are already made, or for evaluating poten-
tial choices, there are few proposals based on arguments for
handling decision making where evidence/uncertainty plays a
central role. In fact, we can point out three main approaches
on this topic: Bonet and Geffner[Bonet and Geffner, 1996],
works based on Logic of Argumentation (LA)[Krauseet al.,
1995] and more recently works based on the Possibilistic
Logic (PL) [Amgoud and Prade, 2004]. From our point of
view, all these approaches have relevant properties. However,
their expressive power is quite limited.

To find a representation of the information under evi-
dence/uncertainty has been subject of much debate. For those
steeped in probability, there is only one appropriate model for
numeric uncertainty, and that is probability. But probability
has its problems. For one thing, the numbers are not always
available. For another, the commitment to numbers means
that any two events must be comparable in terms of proba-
bility: either one event is more probable than the other, or
they have equal probability[Halpern, 2005]. In fact, in[Mc-
Carthy and Hayes, 1969], McCarthy and Hayes pointed out

that attaching probabilities to a statement has the following
objections:

1. It is not clear how to attach probabilities to statements
containing quantifiers in a way that corresponds to the
amount of conviction people have.

2. The information necessary to assign numerical proba-
bilities is not ordinary available. Therefore, a formalism
that required numerical probabilities would be epistemo-
logically inadequate.

In [Carofiglio, 2004], it was proposed an interesting argu-
mentation approach where the degree of belief in the argu-
ment’s conclusion depends on the degree of belief in the ar-
gument’s premises. This approach is so useful when the ap-
plication domain permits to define probability links between
premises and conclusions of an arguments.

In our modality argumentation definition, we also make
a direct relation between the degree of belief in the argu-
ment’s conclusion and the degree of belief in the argument’s
premises like[Carofiglio, 2004]’s approach. However, our
approach does not depend of probability relations. Mainly,
it takes relevance when in an application domain it is dif-
ficult to define probability relations as it is the case in the
medical domain. It is important to point out that sometimes
when we are using a probability approach, one of the hard-
est parts for solving a problem is to identify the probability
relations4. However, sometimes it is enough to have just rel-
ative likelihoods (modalities) for modeling different levels of
evidence/uncertaintye.g.possible, probable, plausible, sup-
portedandopen, where each relative likelihood is a possible
world/class of believes. Also by considering a partial order
¹ for ordering the relative likelihoods, we can provide a like-
lihood ordering for the worlds/classes of believes (see Figure
1).

By the lack of space, it is difficult to present in this pa-
per a long example where we could show all the features of
our possibilistic approach. We are expecting to have a long
version of this paper in a short term.

7 Conclusions and future work
In this paper we present an argumentation approach which
has a rich specification language for encoding knowledge un-
der imprecise or uncertain information. For instance, our ap-
proach permits to use two kinds of negation :strong negation
and negation as failure, instead of only one,strong nega-
tion, as it is the case of all the known approaches. In fact,
our approach is the result of the combination of a successful
non-monotonic approach (Answer Set Programming[Baral,
2003]) and some standard ideas of the most representative
argumentation approache.g.Dung’s approach[Dung, 1995],
LA’s approach[Krauseet al., 1995], and PL’s approach[Am-
goud and Prade, 2004].

Strictly speaking, our definition ofmodality argumentis an
argument in favor of abelief. Thus, if we want to give argu-
ments in favor of a goal that a rational agent has to complete,

4The reader could see[Halpern, 2005], where it is presented a
discussion of some of the problems to find a numerical representa-
tion for uncertainty.



it is necessary to distinguish between arguments in favor of
beliefsand arguments in favor ofgoals. Therefore, our future
work is addressed to extend our approach in order to achieve
goals.

We propose a modality based argumentation approach by
understanding a modality as a category of certain meaning
having to do with the expression of possibility. This approach
has a rich specification language based on the ASP’s lan-
guage. The specification language permits to encode knowl-
edge which expresses levels of certainty. By using a modality
specification language and the concept of possibilistic stable
model, we define anovel approach of modality arguments.
A modality argument emphasizes in the evidence/uncertainty
knowledge that support its conclusion. By considering the ev-
idence of each argument, it is presented a conflict managing
approach between modality arguments. This approach also
manages the inconsistency of a knowledge base.
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