
Abstract
This paper reports our work concerning the develop-
ment of a computer game for abstract argumentation. In
particular, we discuss the dialogue protocol we have
used to regulate players in making moves. We also dis-
cuss proposed strategies for a software agent to act as a
game player. The computer game has been fully im-
plemented, and enables human versus human, agent
versus agent and human versus agent playing of the
game. A user based evaluation has been undertaken,
and suggests that the game is both challenging and en-
tertaining and is easy to learn. It is anticipated that this
work will contribute to the development of argumenta-
tive agents and of computer game based educational
argument, and help to illuminate research issues in the
field of argumentation systems.

1 Introduction
Much work in computational dialectics concerns exchange
of concrete arguments, e.g. [Bench-Capon, 1998; Grasso et
al., 2000; Yuan, 2004]. This paper however outlines our
work in using abstract species of argument [Dung, 1995] to
construct a computer game to enable human-human, agent-
agent and human-agent interaction. The game is expected to
be entertaining and at the same time to be used to educa-
tional advantage - to develop students’ planning skills. The
remainder of this paper is organised as follows. The concept
of an abstract argumentation system is briefly introduced in
section 2. The discussion of the dialogue protocol used in
our implementation is presented in section 3. Section 4 pro-
vides the technical details of our computational implementa-
tion of the game. The strategy for a software agent to act as
a worthy opponent is presented in section 5 and details of
the user evaluation are discussed in section 6. The final sec-
tion draws the conclusions and discusses our intended future
work concerning the development of the abstract argumen-
tation game.

2 Abstract Argumentation System
An abstract argumentation system A is defined in [Dung,
1995; Vreeswijk and Prakken, 2000; Wooldridge, 2002] as a
pair

A = <X, ←>,
where X is a set of arguments, and ← is an attacking rela-
tion between pairs of arguments in X. The expression a← b
is pronounced as “a is attacked by b” or “b is the attacker of
a”.

An example of an abstract argumentation system can be
seen in figure 1, which represents the pair A = <X, ←> with
arguments

X= {a, b, c, f, g, j, k, o, p, q, t, v, y}

Figure 1 An example of abstract argumentation system

The abstract argumentation system has a number of inter-
esting properties for computational utilisation. Firstly, it

A Computer Game for Abstract Argumentation

Tangming Yuan, Viðar Svansson
Department of Computer Science, Faculty of Business and Science

University of Akureyri, Akureyri 600, Iceland
yuan@unak.is, vidar@teikn.is

David Moore, Alec Grierson
School of Computing, Leeds Metropolitan University,

Leeds LS6 3QS, United Kingdom
{d.moore, a.j.grierson}@leedsmet.ac.uk

concerns the attacking relation between arguments only; it
does not concern the internal structure of each argument (ie
its premises and conclusion) or where the attacking relations
come from. Players operationalising an abstract argumenta-
tion system do not need to argue about the validity of the
attacking relations between different arguments (e.g. argu-
ment b attacks argument a in figure 1). Secondly, the ab-
stract system is represented as a directed graph, which en-
ables the user to view the complete system and to select an
argument directly from the graph. It therefore avoids the
difficulty of substantive user input, as faced by systems such
as those of Bench-Capon [1998] and Yuan [2004], who
adopt a menu-based approach, of Grasso et al. [2000] who
use first order predicates and of Ravenscroft and Pilkington
[2000] who use rhetorical predicates. Given the above ar-
guments, the abstract argumentation system is adopted in
the computer game that will be described in the coming sec-
tions.

3 The Argument Game
There must be some rules regulating the players to ensure
fair play. The rules should be simple so that a human user
can easily adopt them and quickly develop his/her winning
strategies. Different argument games have been developed
in the area of computational dialectics, e.g. [Vreeswijk and
Prakken, 2000; Wooldridge, 2002; Dunne and Bench-
Capon, 2003]. We adopt the game presented in
[Wooldridge, 2002: 153-154] for reasons of simplicity. The
argument game is formalised as a quadruple
 G= <A, D, R, P>,
where A is the argumentation system (e.g. the one outlined
in section 2), D is the dialogue history <α0, α1, α2,… αn>
which contains a set of moves made by game participants, R
is a set of rules regulating players to make a move, and P is
a pair of players {0, 1}.

Figure 2 An example of the system interface

The set R contains six rules:
1. First move in D is made by P0.

P0= 0
2. Players take turns making moves.

Pi= Pi mod 2
3. Players cannot repeat a move.

∀αi, αj∈D, αi ≠αj
4. Each move has to attack (defeat) the previous move

αi→ αi-1
5. The game is ended if no further moves are possible

∀αi∈Α ∧ ∉D,αi→αn
6. The winner of the game is the player that makes the fi-

nal move.
Gwinner= Pn mod 2

4 The Computational Implementation
The approach, then, is to use the argument game outlined
above as the basis for a computer argumentation game. A
fully functional system has been built, using the XML and
Java programming languages, and deployed on the internet
(http://notendur.unak.is/not/yuan/game/index.php). The
system is designed to have three levels: level 1, level 2 and
level 3, according to the complexity of the argumentation
system. The level 1 argumentation system contains 6 argu-
ments, level 2 13 arguments, and level 3 24 arguments. A
user can select his/her preferred level to play the game. In
addition, the system is designed to enable the user to select

his/her opponent. There are three choices for this: another
human player, a random agent or a smart agent. A random
agent is the one making a move by randomly picking up a
legally available argument. A smart agent has been given
strategies to select the best possible arguments in order to
win the game. Rather than being a game player, the user
can also set up two software agents and observe them play-
ing the game.

An example game involving a user playing with a soft-
ware agent can be seen in figure 2. The user made the first
move p, the agent made the second move a though it had
other available options c, w, o, in attacking p. In the third
turn, the user made the only available move o in attacking a.
The game continues until the user made the argument m.
The software agent in this situation cannot locate any further
arguments attacking m, the system therefore proclaims the
user the winner.

The system architecture is shown in figure 3. There are
five main units of the system: visualisation, control, knowl-
edge base, environment and agent units. The visualisation
unit provides a user interface for the user to interact with the
system. An example user interface is shown in Figure 2. The
top panel of the interface displays the argumentation system
as a directed graph where letters represent abstract argu-
ments and the arcs represent the attacking relations. The
graphs are created by using Adobe Photoshop and saved as
.png image files. When a new game starts, the appropriate

Figure 3 System architecture

graphical image is loaded depending on the level of com-
plexity selected by the user. To make a move, the user needs
simply to point the mouse to the target argument and click
on it. The arguments made by P0 are highlighted with green
circles, and by P1 red circles. (Current work involves an
alternative arrangement usable by colour blind people.) The
dialogue history is displayed at the bottom panel of the in-
terface. The middle panel of the interface contains three
buttons: New Game, Quit and Random Move. The former
two are self-explanatory. The Random Move button is de-
signed for the user when he/she cannot make up his/her
mind on what move to make. The system will make a ran-
dom legal move on behalf of the user when the button is
pushed.

The control unit is designed to have an input manager, an
output manager and a referee. The input manager waits for
moves made by the agent and user, and then passes the
move to the referee for validation. If the move is valid, then
the dialogue history is updated, otherwise the move maker
needs to redo the move. The output manager is responsible
for displaying the newly updated dialogue history and rele-
vant dialogue instructions on the user interface.

The knowledge base unit contains the XML files which
are identical to each of the graphical image files. Each ar-
gument is represented as a XML tag, e.g. <param value= “a,
59, 307, b, p” name= “argument0”>. The name field speci-
fies that this is an argument followed by a numerical identi-
fier to distinguish it from other arguments. The value field
specifies parameters for this argument: the first is the ab-
stract name of this argument, the second and the third indi-
cate the X and Y-coordinates of the argument positioning on
the graphical image. The remaining parameters indicate all
the arguments attacked by this argument. The example ar-
gument says that the argument a is positioned at (59, 307),
and the arguments b and p are attacked by a. It is important
to encode an argumentation system using XML, because it
is much easier for the Java program to process XML files
than to process image files. This also has the advantage of
allowing non-Java project members to construct argumenta-
tion systems using Adobe Photoshop and XML.

The environment unit contains an argumentation system A
and a dialogue history D. When a new game starts, the cor-
responding XML file is loaded and parsed, as result of
which the complete binary attacking structure of the argu-
mentation system is encoded into a two dimensional boo-
lean array, where Aαi, αj is true if αi→αj. Figure 4 shows an
example argumentation system “c→b→a” encoded as a 2D
boolean array, where 1 refers to true and 0 refers to false.

A a b c
a 0 0 0
b 1 0 0
c 0 1 0

Table 1 An example argumentation
 system encoded as a 2D Boolean array

The dialogue history D is structured as a stack of coloured
arguments. The colours are consistent with their colours
displayed on the graphical user interface. The top of the
stack points to the arguments last made. The dialogue his-
tory is dynamic while the argumentation system remains
static once loaded.

The agent unit is used when a software agent is one (or
both) of the game players. It has its own lifecycle control
separated from the system main thread. The planner of the
agent has been given necessary strategies to enable the agent
to be a worthy game opponent. The agent strategy will be
discussed in the next section.

5 Agent Strategy
Several dialogue strategies for computational dialectic sys-
tems have been proposed by different authors. Yuan [2004],
for example, utilises Moore’s [1993] three level decision
making to enable a computer to participate in academic de-
bate on a controversial issue. For dialogue types other than
debate, other strategies may be appropriate. Grasso et al.
[2000] adopt, for their nutritional advice-giving system, sche-
mas derived from Perelman and Olbrechts-Tyteca's [1969]
"New Rhetoric", and Ravenscroft and Pilkington [2000] utilise
"a repertoire of legitimate tactics available for addressing com-
mon conceptual difficulties" (p283). Amgoud and Maudet
[2002] suggest "meta-preferences", such as "choose the small-
est argument", to drive the choice of move, Freeman and Far-
ley (1996) delineate ordering heuristics as guidelines for se-
lecting argument moves, and Oren et al. [2006] propose a heu-
ristic for argumentation based on minimising the informa-
tion revealed to other dialogue participants.

When designing strategies for computational agents com-
peting with human users, there has been a genuine concern
that a computer’s superior memory when compared with
human players may undermine the fairness of the game
[Walton, 1984], in that users may be frustrated being con-
stantly defeated. We have therefore proposed two levels of
strategies for a software agent to act as game participant: a
random strategy and a probability utility based strategy.

A random agent picks up an argument randomly from the
set of legal arguments. The set of legal arguments is defined
as follows:

α ∈Α ∧ α→ top[D] ∧α ∉ D
where α is an element in the set, A is the argumentation sys-
tem, D represents the stack of dialogue history, and top[D]
is the last move in the dialogue history.

To compute the set of legally available moves, an algo-
rithm needs to traverse A to collect all arguments attacking
top[D], and then traverse the dialogue history D to make
sure each of the collected arguments has not been used. The
running time for the random strategy is O(n2) in the worst
case, where n is the number of arguments in the argumenta-
tion system.

A probability-utility based strategy has been proposed,
which enables an agent to select a legal move with the high-
est probability of winning an abstract argumentation game.
A probability-utility based agent first generates a dialogue
tree T rooted at α0 via the algorithm specified below:

Dialogue_Tree_Generator1 (A, α0)
1 for each α ∈ A
2 do π[α] <= NIL

 3 Q <= ∅
4 ENQUEUE (Q, α0)
5 while Q ≠∅
6 do u <= DEQUEUE (Q)

 7 for each v→ u
8 do if v∉D[v]
9 then π[v] <= u
10 ENQUEUE (Q, v)

where α0 is the first argument made by its opponent, A
represents the argumentation system, π[α] refers to the par-
ent of α, Q is the standard queue data structure, ENQUEUE
and DEQUEUE are queue operations, D[v] refers to the
dialogue history up to the point of v, and <= refers to as-
signment.

A dialogue tree (such as that shown in figure 4) is gener-
ated by running the Dialogue_Tree_Generator(A, p), where
A is the argumentation system in figure 1, p is the first move
made by the user.

Figure 4 An example dialogue tree

Every path from the root down to a leaf is a possible dia-
logue sequence. Some sequences result in victory (utility=1)
while some result in defeat (utility=0). Some branches con-
tain more winning sequences, while some branches contain
more defeat sequences. The agent is designed to select the
move with the highest probability of winning.

The utility for each node in the dialogue tree T is then
computed by using the algorithm below:
 Probability_Utility (T, α)

1 Pα <= 0
2 if children[α] is empty
3 then Pα <= depth[α] mod 2
4 else for each β ∈ children[α]
5 do Pα <= Pα+ Probability-Utility (T, β)
6 Pα <= Pα/|childen[α]|

1 We follow the pseudo-code convention of [Cormen et al., 2001],
except that we use “<=” to refer to an assignment instead of a
slashed arrow, because we are using a slahed arrow to refer to an
attacking relation between arguments in this paper.

where Pα refers to the probability utility of node α, chil-
dren[α] refers to set of children of node α and depth[α] re-
fers to the depth of node α. The utility for a leaf is computed
against its depth (line 2-3). The utility for an internal node is
the sum of the utility value of its children (line 4-5), divided
by the number of its children (line 6). The occurrence prob-
abilities of its children are equal.

By using the Probability-Utility algorithm, the utility val-
ues for each node are computed as shown in figure 5 (values
are after the /).

Figure 5 A dialogue tree with utility values

Given the utility value of each node, the agent would se-
lect the argument with the highest value from the set of le-
gally available arguments {q, b} to response to user’s move
p; in this example, the agent will select q rather than b.

The running time for the Dialogue_Tree_Generator algo-
rithm is O(r*n), for the Probability_Utility algorithm O(r),
and in total the time cost for the probability utility strategy
is O(r*n) where r is the total number of attacking relations
and n is the total number of arguments in the argumentation
system. In the worst case where all arguments attack all the
other arguments, the algorithm requires factorial running
time O(n!). In a realistic scenario, however, the number of
attackers k for each argument is much less than n, and the
approximate running time would be O(k!).

6 Evaluation
An initial usability evaluation of the system has been con-
ducted. The purpose of the evaluation was to assess the us-
ability of the game and the proposed strategies. Five par-
ticipants, 3 male and 2 female, were invited to take part in
the evaluation: three Bsc Computer Science students, one
high school student and one 10 year old primary school stu-
dent. After a brief introduction to the game, they each
played 12 different game setups:

Human vs. random agent, level 1
Human vs. random agent, level 2
Human vs. random agent, level 3
Human vs. intelligent agent, level 1
Human vs. intelligent agent, level 2
Human vs. intelligent agent, level 3
Random agent vs. human, level 1
Random agent vs. human, level 2
Random agent vs. human, level 3

p

b/0q/1

c/1f/1

b/1

c/0

g/1

p

bq

cf

b

c

g

Intelligent agent vs. human, level 1
Intelligent agent vs. human, level 2
Intelligent agent vs. human, level 3
The system kept a record of the results of each game.

Each participant played several times for each game setup
until they won. The user reactions were observed by the
experimenter. After playing the game, participants were
asked to fill in a questionnaire concerning their opinion of
the game.

98 games were played, and participants won 60 times
(62%). On level 1 argumentation system, participants won
53%. On level 2, participants won 69%. On level 3, partici-
pants won 61%. Intuitively, the fact that a user has a good
chance of winning whilst not being guaranteed a victory,
can be expected to encourage human users to play with the
software agent. This alleviates a concern similar to that of
Walton [1984], that a computer’s superior memory when
compared with human players may undermine the fairness
of the game.

The random agent won 12 out of 42 games (29%). The in-
telligent agent won 26 out of 56 games (46%). These figures
are in line with the user rating on how smart the agent is:
the random agent received 3.2 out of 10, and the intelligent
agent received 6.2. These figures provide evidence that the
strategies proposed for the intelligent agent do perform
much better than the random strategy.

Most participants adopted a search function similar to the
agent’s utility function in order to be victorious. They took
considerable time travelling the dialogue tree (with finger
pointing to the screen) before making a move. Male users
enjoyed playing the game and said they felt that the game is
entertaining. When asked whether playing the game can
help to develop their planning skills, male players all gave
positive responses. Participants even continued playing the
game with each other after the experiment. They said they
would like to play the game again were it available on the
Internet. The young subject thought the random agent was
more difficult to play with. His focus was on the argumenta-
tion system rather than the opponent. It took him several
tries to win most of the scenarios, but he was clearly im-
proving with practice. The female participants in the evalua-
tion expressed that they did not really enjoy playing the
game though they did well in the game.

There seems to be a very low learning curve for even a
novice user to play the game. The “Random Move” was
never used. Some participants were confused with the at-
tacking relations in the beginning, e.g. whether a→b refers
to a attacks b or b attacks a.

In sum, the proposed probability-utility strategy performs
much better than the random strategy, and they both seem to
encourage human users to play with a software agent. The
game is both challenging and entertaining with a low learn-
ing curve.

7 Conclusion and Further Work
We have constructed a computer game for abstract argu-
mentation. The game enables human-agent, human-human
and agent-agent argumentation. An evaluation has been

conducted which furnishes evidence of the usability of the
system.

We believe that the work reported makes a valuable con-
tribution to the fields of dialectics, of agent communication
and of computer game based argumentation education. Con-
cerning the first of these, we have proposed strategies to be
utilised within the argument game. Further, because the
computer system we have built can readily be adapted to
function with a different dialogue protocol and/or a different
set of strategies, it potentially provides people working in
the field of dialectics with a test bed within which they can
experiment with new models and new strategies they de-
velop that deal with abstract Dung-style arguments.

The work also contributes to agent communication in
general and argumentative agents in particular. The argu-
mentation game we have developed enables two agents
(human and/or computational) to exchange arguments, and
this provides a basis for extending the game for use in ar-
gumentative agent systems. The current set of FIPA (Foun-
dation for Intelligent Physical Agents) agent communication
protocols (e.g. the contract net) are not flexible enough to
cope with argumentation [Norman et al., 2004].

The work contributes to computer game based educa-
tional argument in that the game is both challenging and
entertaining, and expected to be useful for enabling students
to practice their planning ability. In particular, the system
can potentially be used as an assistive tool for teachers who
are teaching and for students who are studying argument
games and abstract argumentation (e.g. as part of a Com-
puter Science course in Agent and Multi-agent Systems).

There are several ways to carry this research forward.
Current work involves refining the system in the light of
evaluation feedback. We are also planning to investigate
different strategies (e.g. min-max and alpha-beta pruning)
for use in the current system, and subsequently enable them
to compete with each other and then study the results.

We are also planning to enable the software agent to give
some “hints” re a good move, and explain why they are seen
as a good move. By doing this, the users can learn the
strategies of playing the game. The current system has three
levels and they were manually constructed. More levels of
argumentation systems can be added to the system. It would
be ideal if different levels of argumentation systems can be
generated on the fly. Further evidence can then be collected
concerning the usefulness of the game as a learning tool.

The system can also be expanded to enable hyperlinks
from the abstract arguments to concrete arguments in some
particular domain, and thus enable the dialogue participants
to exchange concrete arguments as well as the abstract ones.

A further possible investigation is to extend the system
for use in agent systems, e.g. by adding an additional func-
tion to calculate and display preferred extensions of argu-
ment systems.

References
[Amgoud and Maudet, 2002] Leila Amgoud and Nicolas

Maudet. Strategical Considerations for Argumentative
Agents. In Proceedings of the Ninth International Work-

shop on Non-Monotonic Reasoning (NMR'2002), Spe-
cial Session on Argument, Dialogue, and Decision, Tou-
louse.

[Bench-Capon, 1998] Trevor J.M. Bench-Capon. Specifica-
tion and Implementation of Toulmin Dialogue Game. In
Proceedings of JURIX 98, GNI, Nijmegen, pp.5-20.

[Cormen et al., 2001] Thomas H. Cormen, Sharles E. Leis-
erson, Ronald L. Rivest and Clifford Stein. Introduction
to Algorithms, 2nd edition. The MIT express, Cambridge,
Massachusetts, London, England.

[Dunne and Bench-Capon, 2003] Paul E. Dunne and Trevor
J.M. Bench-Capon. Two Party Immediate Response
Disputes: Properties and Efficiency. Artificial Intelli-
gence 149(2):221-50, 2003.

[Dung, 1995] Phan M. Dung. On the acceptability of argu-
ments and its fundamental role in non-monotonic reason-
ing, logic programming and n-person games. Artificial
Intelligence 77 (2): 321-357, 1995.

[Freeman and Farley, 1996] Kathleen Freeman and Ar-
thur M. Farley. A Model of Argumentation and Its Ap-
plication to Legal Reasoning. Artificial Intelligence and
Law, 4: 163-197, 1996.

[Grasso et al., 2000] Floriana Grasso, Alison Cawsey and
Ray Jones. Dialectical Argumentation to Solve Conflicts
in Advice Giving: a Case Study in the Promotion of
Healthy Nutrition. International Journal of Human
Computer Studies, 53: 1077-1115, 2000.

[Moore, 1993] David Moore. Dialogue Game Theory for
Intelligent Tutoring Systems. Unpublished Doctoral Dis-
sertation, Leeds Metropolitan University, 1993.

[Norman et al., 2004] Tim J. Norman, Daniela V. Carbogim,
Eric C. W Krabbe, and Douglas N. Walton. Argument
and Multi-Agent Systems. In Chris. A. Reed and Tim. J.
Norman (editors) Argumentation Machines: New Fron-
tiers in Argument and Computation, volume 9 of Argu-
mentation Library, pages 15-54, 2004. Kluwer Aca-
demic Publishers, Dordrecht.

[Oren et al. 2006] Nir Oren, Tim. J. Norman and Alun
Preece. A Utility and Information Based Heuristic for
Argumentation, In Proceedings of the ECAI'2006 Work-
shop on Computational Models of Natural Argument
(CMNA06), Riva del Garda, Italy, August 2006.

[Pereman and Olbrechts-Tyteca, 1969]Chaim Perelman and
Lucie Olbrechts-Tyteca. The New Rhetoric: a Treatise on
Argumentation. Notre Dame Press, 1969.

[Ravenscroft and Pilkington, 2000] Andrew Ravenscroft
and Rachael M. Pilkington. Investigate by Design: Dia-
logue Models to Support Reasoning and Conceptual
Change. International Journal of Artificial Intelligence
in Education, 11: 237-298, 2000.

[Vreeswijk and Prakken, 2000] Gerard A.W. Vreeswijk and
Henry Prakken. Credulous and Sceptical Argument
Games for Preferred Semantics. In M. Ojeda-Aciego,
I.P. de Guzman, G. Brewka, & L. Moniz Pereria (Eds.),

Proceedings of JELIA'2000, The 7th European Work-
shop on Logic for Artificial Intelligence pp. 239-253.
Berlin: Springer Verlag.

[Walton, 1984] Douglas N. Walton. Logical Dialogue
Games and Fallacies. University Press of America.

[Wooldridge, 2002]Mike Wooldridge. An Introduction to
MultiAgent Systems. John Wiley and Sons, New York,
NY, USA, 2002.

[Yuan, 2004] Tangming Yuan. Human-Computer Debate, a
Computational Dialectics Approach. Unpublished Doc-
toral Dissertation, Leeds Metropolitan University, 2004.

